Spaces:
Running
on
Zero
Running
on
Zero
import uuid | |
import gradio as gr | |
import pandas as pd | |
import os | |
import subprocess | |
import time | |
import shutil | |
import sys | |
from datetime import datetime | |
import re | |
from PIL import Image | |
# --- Configuration --- | |
#AUTFORGE_SCRIPT_PATH = "auto_forge.py" # Make sure this points to your script | |
DEFAULT_MATERIALS_CSV = "default_materials.csv" | |
GRADIO_OUTPUT_BASE_DIR = "output" | |
os.makedirs(GRADIO_OUTPUT_BASE_DIR, exist_ok=True) | |
REQUIRED_SCRIPT_COLS = ["Brand", " Name", " TD", " Color"] | |
DISPLAY_COL_MAP = { | |
"Brand": "Brand", | |
" Name": "Name", | |
" TD": "TD", | |
" Color": "Color (Hex)", | |
} | |
def ensure_required_cols(df, *, in_display_space): | |
""" | |
Return a copy of *df* with every required column present. | |
If *in_display_space* is True we use the display names | |
(Brand, Name, TD, Color (Hex)); otherwise we use the script names. | |
""" | |
target_cols = ( | |
DISPLAY_COL_MAP if in_display_space else {k: k for k in REQUIRED_SCRIPT_COLS} | |
) | |
df_fixed = df.copy() | |
for col_script, col_display in target_cols.items(): | |
if col_display not in df_fixed.columns: | |
# sensible defaults | |
if "TD" in col_display: | |
default = 0.0 | |
elif "Color" in col_display: | |
default = "#000000" | |
elif "Owned" in col_display: # NEW | |
default = "false" | |
else: | |
default = "" | |
df_fixed[col_display] = default | |
# order columns nicely | |
return df_fixed[list(target_cols.values())] | |
def rgba_to_hex(col: str) -> str: | |
""" | |
Turn 'rgba(r, g, b, a)' or 'rgb(r, g, b)' into '#RRGGBB'. | |
If the input is already a hex code or anything unexpected, | |
return it unchanged. | |
""" | |
if not isinstance(col, str): | |
return col | |
col = col.strip() | |
if col.startswith("#"): # already fine | |
return col.upper() | |
m = re.match( | |
r"rgba?\(\s*([\d.]+)\s*,\s*([\d.]+)\s*,\s*([\d.]+)(?:\s*,\s*[\d.]+)?\s*\)", | |
col, | |
) | |
if not m: | |
return col # not something we recognise | |
r, g, b = (int(float(x)) for x in m.groups()[:3]) | |
return "#{:02X}{:02X}{:02X}".format(r, g, b) | |
# --- Helper Functions --- | |
def get_script_args_info(exclude_args=None): | |
if exclude_args is None: | |
exclude_args = [] | |
all_args_info = [ | |
# input_image is handled separately in the UI | |
{ | |
"name": "--iterations", | |
"type": "number", | |
"default": 2000, | |
"help": "Number of optimization iterations", | |
}, | |
{ | |
"name": "--layer_height", | |
"type": "number", | |
"default": 0.04, | |
"step": 0.01, | |
"help": "Layer thickness in mm", | |
}, | |
{ | |
"name": "--max_layers", | |
"type": "number", | |
"default": 75, | |
"precision": 0, | |
"help": "Maximum number of layers", | |
}, | |
{ | |
"name": "--learning_rate", | |
"type": "number", | |
"default": 0.015, | |
"step": 0.001, | |
"help": "Learning rate for optimization", | |
}, | |
{ | |
"name": "--background_height", | |
"type": "number", | |
"default": 0.4, | |
"step": 0.01, | |
"help": "Height of the background in mm", | |
}, | |
{ | |
"name": "--background_color", | |
"type": "colorpicker", | |
"default": "#000000", | |
"help": "Background color", | |
}, | |
{ | |
"name": "--stl_output_size", | |
"type": "number", | |
"default": 100, | |
"precision": 0, | |
"help": "Size of the longest dimension of the output STL file in mm", | |
}, | |
{ | |
"name": "--nozzle_diameter", | |
"type": "number", | |
"default": 0.4, | |
"step": 0.1, | |
"help": "Diameter of the printer nozzle in mm", | |
}, | |
{ | |
"name": "--pruning_max_colors", | |
"type": "number", | |
"default": 10, | |
"precision": 0, | |
"help": "Max number of colors allowed after pruning", | |
}, | |
{ | |
"name": "--pruning_max_swaps", | |
"type": "number", | |
"default": 20, | |
"precision": 0, | |
"help": "Max number of swaps allowed after pruning", | |
}, | |
{ | |
"name": "--pruning_max_layer", | |
"type": "number", | |
"default": 75, | |
"precision": 0, | |
"help": "Max number of layers allowed after pruning", | |
}, | |
{ | |
"name": "--warmup_fraction", | |
"type": "slider", | |
"default": 1.0, | |
"min": 0.0, | |
"max": 1.0, | |
"step": 0.01, | |
"help": "Fraction of iterations for keeping the tau at the initial value", | |
}, | |
{ | |
"name": "--learning_rate_warmup_fraction", | |
"type": "slider", | |
"default": 0.25, | |
"min": 0.0, | |
"max": 1.0, | |
"step": 0.01, | |
"help": "Fraction of iterations that the learning rate is increasing (warmup)", | |
}, | |
# { | |
# "name": "--init_tau", | |
# "type": "number", | |
# "default": 1.0, | |
# "help": "Initial tau value for Gumbel-Softmax", | |
# }, | |
# { | |
# "name": "--final_tau", | |
# "type": "number", | |
# "default": 0.01, | |
# "help": "Final tau value for Gumbel-Softmax", | |
# }, | |
# { | |
# "name": "--min_layers", | |
# "type": "number", | |
# "default": 0, | |
# "precision": 0, | |
# "help": "Minimum number of layers. Used for pruning.", | |
# }, | |
{ | |
"name": "--early_stopping", | |
"type": "number", | |
"default": 1500, | |
"precision": 0, | |
"help": "Number of steps without improvement before stopping", | |
}, | |
{ | |
"name": "--random_seed", | |
"type": "number", | |
"default": 0, | |
"precision": 0, | |
"help": "Specify the random seed, or use 0 for automatic generation", | |
}, | |
{ | |
"name": "--num_init_rounds", | |
"type": "number", | |
"default": 32, | |
"precision": 0, | |
"help": "Number of rounds to choose the starting height map from.", | |
}, | |
] | |
return [arg for arg in all_args_info if arg["name"] not in exclude_args] | |
# Initial filament data | |
initial_filament_data = { | |
"Brand": ["Generic", "Generic", "Generic"], | |
" Name": ["PLA Black", "PLA Grey", "PLA White"], | |
" TD": [1.0, 1.0, 1.0], | |
" Color": ["#000000", "#808080", "#FFFFFF"], | |
" Owned": ["true", "true", "true"], # ← add | |
} | |
initial_df = pd.DataFrame(initial_filament_data) | |
if os.path.exists(DEFAULT_MATERIALS_CSV): | |
try: | |
initial_df = pd.read_csv(DEFAULT_MATERIALS_CSV) | |
for col in ["Brand", " Name", " TD", " Color"]: | |
if col not in initial_df.columns: | |
initial_df[col] = None | |
initial_df = initial_df[["Brand", " Name", " TD", " Color"]].astype( | |
{" TD": float, " Color": str} | |
) | |
except Exception as e: | |
print(f"Warning: Could not load {DEFAULT_MATERIALS_CSV}: {e}. Using default.") | |
initial_df = pd.DataFrame(initial_filament_data) | |
else: | |
initial_df.to_csv(DEFAULT_MATERIALS_CSV, index=False) | |
# Helper for creating an empty 10-tuple for error returns | |
def create_empty_error_outputs(log_message=""): | |
return ( | |
log_message, # progress_output | |
None, # final_image_preview | |
gr.update(visible=False, interactive=False), # ### ZIP: download_zip | |
) | |
# --- Gradio UI Definition --- | |
with gr.Blocks(theme=gr.themes.Soft()) as demo: | |
gr.Markdown("# Autoforge Web UI") | |
filament_df_state = gr.State(initial_df.copy()) | |
current_run_output_dir = gr.State(None) | |
with gr.Tabs(): | |
with gr.TabItem("Filament Management"): | |
gr.Markdown( | |
'Manage your filament list. This list will be saved as a CSV and used by the Autoforge process. \n To remove a filament simply rightclick on any of the fields and select "Delete Row"' | |
) | |
with gr.Row(): | |
load_csv_button = gr.UploadButton( | |
"Load Filaments CSV", file_types=[".csv"] | |
) | |
save_csv_button = gr.Button("Save Current Filaments to CSV") | |
filament_table = gr.DataFrame( | |
value=ensure_required_cols( | |
initial_df.copy().rename( | |
columns={" Name": "Name", " TD": "TD", " Color": "Color (Hex)"} | |
), | |
in_display_space=True, | |
), | |
headers=["Brand", "Name", "TD", "Color (Hex)"], | |
datatype=["str", "str", "number", "str"], | |
interactive=True, | |
label="Filaments", | |
) | |
gr.Markdown("### Add New Filament") | |
with gr.Row(): | |
new_brand = gr.Textbox(label="Brand") | |
new_name = gr.Textbox(label="Name") | |
with gr.Row(): | |
new_td = gr.Number( | |
label="TD (Transmission/Opacity)", | |
value=1.0, | |
minimum=0, | |
maximum=100, | |
step=0.1, | |
) | |
new_color_hex = gr.ColorPicker(label="Color", value="#FF0000") | |
add_filament_button = gr.Button("Add Filament to Table") | |
download_csv_trigger = gr.File( | |
label="Download Filament CSV", visible=False, interactive=False | |
) | |
def update_filament_df_state_from_table(display_df): | |
display_df = ensure_required_cols(display_df, in_display_space=True) | |
# make sure every colour is hex | |
if "Color (Hex)" in display_df.columns: | |
display_df["Color (Hex)"] = display_df["Color (Hex)"].apply( | |
rgba_to_hex | |
) | |
script_df = display_df.rename( | |
columns={"Name": " Name", "TD": " TD", "Color (Hex)": " Color"} | |
) | |
script_df = ensure_required_cols(script_df, in_display_space=False) | |
filament_df_state.value = script_df | |
def add_filament_to_table(current_display_df, brand, name, td, color_hex): | |
if not brand or not name: | |
gr.Warning("Brand and Name cannot be empty.") | |
return current_display_df | |
color_hex = rgba_to_hex(color_hex) # <-- new line | |
new_row = pd.DataFrame( | |
[{"Brand": brand, "Name": name, "TD": td, "Color (Hex)": color_hex}] | |
) | |
updated_display_df = pd.concat( | |
[current_display_df, new_row], ignore_index=True | |
) | |
update_filament_df_state_from_table(updated_display_df) | |
return updated_display_df | |
def load_filaments_from_csv_upload(file_obj): | |
if file_obj is None: | |
current_script_df = filament_df_state.value | |
if current_script_df is not None and not current_script_df.empty: | |
return current_script_df.rename( | |
columns={ | |
" Name": "Name", | |
" TD": "TD", | |
" Color": "Color (Hex)", | |
} | |
) | |
return initial_df.copy().rename( | |
columns={" Name": "Name", " TD": "TD", " Color": "Color (Hex)"} | |
) | |
try: | |
loaded_script_df = pd.read_csv(file_obj.name) | |
loaded_script_df = ensure_required_cols( | |
loaded_script_df, in_display_space=False | |
) | |
expected_cols = ["Brand", " Name", " TD", " Color"] | |
if not all( | |
col in loaded_script_df.columns for col in expected_cols | |
): | |
gr.Error( | |
f"CSV must contain columns: {', '.join(expected_cols)}. Found: {loaded_script_df.columns.tolist()}" | |
) | |
current_script_df = filament_df_state.value | |
if ( | |
current_script_df is not None | |
and not current_script_df.empty | |
): | |
return current_script_df.rename( | |
columns={ | |
" Name": "Name", | |
" TD": "TD", | |
" Color": "Color (Hex)", | |
} | |
) | |
return initial_df.copy().rename( | |
columns={ | |
" Name": "Name", | |
" TD": "TD", | |
" Color": "Color (Hex)", | |
} | |
) | |
filament_df_state.value = loaded_script_df.copy() | |
return loaded_script_df.rename( | |
columns={" Name": "Name", " TD": "TD", " Color": "Color (Hex)"} | |
) | |
except Exception as e: | |
gr.Error(f"Error loading CSV: {e}") | |
current_script_df = filament_df_state.value | |
if current_script_df is not None and not current_script_df.empty: | |
return current_script_df.rename( | |
columns={ | |
" Name": "Name", | |
" TD": "TD", | |
" Color": "Color (Hex)", | |
} | |
) | |
return initial_df.copy().rename( | |
columns={" Name": "Name", " TD": "TD", " Color": "Color (Hex)"} | |
) | |
def save_filaments_to_file_for_download(current_script_df_from_state): | |
if ( | |
current_script_df_from_state is None | |
or current_script_df_from_state.empty | |
): | |
gr.Warning("Filament table is empty. Nothing to save.") | |
return None | |
df_to_save = current_script_df_from_state.copy() | |
required_cols = ["Brand", " Name", " TD", " Color"] | |
if not all(col in df_to_save.columns for col in required_cols): | |
gr.Error( | |
f"Cannot save. DataFrame missing required script columns. Expected: {required_cols}. Found: {df_to_save.columns.tolist()}" | |
) | |
return None | |
temp_dir = os.path.join(GRADIO_OUTPUT_BASE_DIR, "_temp_downloads") | |
os.makedirs(temp_dir, exist_ok=True) | |
temp_filament_csv_path = os.path.join( | |
temp_dir, | |
f"filaments_{datetime.now().strftime('%Y%m%d_%H%M%S')}.csv", | |
) | |
try: | |
df_to_save.to_csv(temp_filament_csv_path, index=False) | |
gr.Info("Filaments prepared for download.") | |
return gr.File( | |
value=temp_filament_csv_path, | |
label="Download Filament CSV", | |
interactive=True, | |
visible=True, | |
) | |
except Exception as e: | |
gr.Error(f"Error saving CSV for download: {e}") | |
return None | |
filament_table.change( | |
update_filament_df_state_from_table, | |
inputs=[filament_table], | |
outputs=None, | |
queue=False, | |
) | |
add_filament_button.click( | |
add_filament_to_table, | |
inputs=[filament_table, new_brand, new_name, new_td, new_color_hex], | |
outputs=[filament_table], | |
) | |
load_csv_button.upload( | |
load_filaments_from_csv_upload, | |
inputs=[load_csv_button], | |
outputs=[filament_table], | |
) | |
save_csv_button.click( | |
save_filaments_to_file_for_download, | |
inputs=[filament_df_state], | |
outputs=[download_csv_trigger], | |
) | |
with gr.TabItem("Run Autoforge"): | |
accordion_params_dict = {} | |
accordion_params_ordered_names = [] | |
with gr.Row(): | |
with gr.Column(scale=1): | |
gr.Markdown("### Input Image (Required)") | |
input_image_component = gr.Image( | |
type="filepath", | |
image_mode="RGBA", | |
label="Upload Image", | |
sources=["upload"], | |
interactive=True, | |
) | |
with gr.Column(scale=2): | |
gr.Markdown("### Preview") | |
with gr.Accordion("Progress & Output", open=True): | |
final_image_preview = gr.Image( | |
label="Model Preview", | |
type="filepath", | |
interactive=False, | |
) | |
with gr.Row(): | |
download_zip = gr.File( # was visible=True | |
label="Download all results (.zip)", | |
interactive=True, | |
visible=False, | |
) | |
with gr.Row(): | |
with gr.Accordion("Adjust Autoforge Parameters", open=False): | |
args_for_accordion = get_script_args_info( | |
exclude_args=["--input_image"] | |
) | |
for arg in args_for_accordion: | |
label, info, default_val = ( | |
f"{arg['name']}", | |
arg["help"], | |
arg.get("default"), | |
) | |
if arg["type"] == "number": | |
accordion_params_dict[arg["name"]] = gr.Number( | |
label=label, | |
value=default_val, | |
info=info, | |
minimum=arg.get("min"), | |
maximum=arg.get("max"), | |
step=arg.get( | |
"step", | |
0.001 if isinstance(default_val, float) else 1, | |
), | |
precision=arg.get("precision", None), | |
) | |
elif arg["type"] == "slider": | |
accordion_params_dict[arg["name"]] = gr.Slider( | |
label=label, | |
value=default_val, | |
info=info, | |
minimum=arg.get("min", 0), | |
maximum=arg.get("max", 1), | |
step=arg.get("step", 0.01), | |
) | |
elif arg["type"] == "checkbox": | |
accordion_params_dict[arg["name"]] = gr.Checkbox( | |
label=label, value=default_val, info=info | |
) | |
elif arg["type"] == "colorpicker": | |
accordion_params_dict[arg["name"]] = gr.ColorPicker( | |
label=label, value=default_val, info=info | |
) | |
else: | |
accordion_params_dict[arg["name"]] = gr.Textbox( | |
label=label, value=str(default_val), info=info | |
) | |
accordion_params_ordered_names.append(arg["name"]) | |
run_button = gr.Button( | |
"Run Autoforge Process", | |
variant="primary", | |
elem_id="run_button_full_width", | |
) | |
progress_output = gr.Textbox( | |
label="Console Output", | |
lines=15, | |
autoscroll=True, | |
show_copy_button=False, | |
) | |
# --- Backend Function for Running the Script --- | |
def execute_autoforge_script( | |
current_filaments_df_state_val, input_image_path, *accordion_param_values | |
): | |
# 0. Validate Inputs | |
if ( | |
not input_image_path | |
): # Covers None and empty string from gr.Image(type="filepath") | |
gr.Error("Input Image is required! Please upload an image.") | |
return create_empty_error_outputs("Error: Input Image is required!") | |
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S") + "_" + str(uuid.uuid4()) | |
run_output_dir_val = os.path.join(GRADIO_OUTPUT_BASE_DIR, f"run_{timestamp}") | |
os.makedirs(run_output_dir_val, exist_ok=True) | |
current_run_output_dir.value = run_output_dir_val | |
# 1. Save current filaments | |
if ( | |
current_filaments_df_state_val is None | |
or current_filaments_df_state_val.empty | |
): | |
gr.Error("Filament table is empty. Please add filaments.") | |
return create_empty_error_outputs("Error: Filament table is empty.") | |
temp_filament_csv = os.path.join(run_output_dir_val, "materials.csv") | |
df_to_save = current_filaments_df_state_val.copy() | |
required_cols = ["Brand", " Name", " TD", " Color"] | |
missing_cols = [col for col in required_cols if col not in df_to_save.columns] | |
if missing_cols: | |
err_msg = ( | |
f"Error: Filament data is missing columns: {', '.join(missing_cols)}." | |
) | |
gr.Error(err_msg) | |
return create_empty_error_outputs(err_msg) | |
try: | |
df_to_save.to_csv(temp_filament_csv, index=False) | |
except Exception as e: | |
err_msg = f"Error saving temporary filament CSV: {e}" | |
gr.Error(err_msg) | |
return create_empty_error_outputs(err_msg) | |
# 2. Construct command | |
python_executable = sys.executable or "python" | |
command = ["autoforge",] | |
command.extend(["--csv_file", temp_filament_csv]) | |
command.extend(["--output_folder", run_output_dir_val]) | |
command.extend(["--disable_visualization_for_gradio","1"]) | |
base_filename = os.path.basename(input_image_path) | |
script_input_image_path = os.path.join(run_output_dir_val, base_filename) | |
try: | |
img = Image.open(input_image_path) | |
# decide where to store the image we pass to Autoforge | |
base_no_ext, _ = os.path.splitext(os.path.basename(input_image_path)) | |
script_input_image_path = os.path.join( | |
run_output_dir_val, f"{base_no_ext}.png" | |
) | |
if img.mode in ("RGBA", "LA") or ( | |
img.mode == "P" and "transparency" in img.info | |
): | |
# the uploaded file has an alpha channel – save it as PNG | |
img.save(script_input_image_path, format="PNG") | |
else: | |
# no alpha present – just copy the file in whatever format it was | |
script_input_image_path = os.path.join( | |
run_output_dir_val, os.path.basename(input_image_path) | |
) | |
shutil.copy(input_image_path, script_input_image_path) | |
command.extend(["--input_image", script_input_image_path]) | |
except Exception as e: | |
err_msg = f"Error handling input image: {e}" | |
gr.Error(err_msg) | |
return create_empty_error_outputs(err_msg) | |
param_dict = dict(zip(accordion_params_ordered_names, accordion_param_values)) | |
for arg_name, arg_widget_val in param_dict.items(): | |
if arg_widget_val is None or arg_widget_val == "": | |
arg_info_list = [ | |
item for item in get_script_args_info() if item["name"] == arg_name | |
] # get full list to check type | |
if ( | |
arg_info_list | |
and arg_info_list[0]["type"] == "checkbox" | |
and arg_widget_val is False | |
): | |
continue | |
else: | |
continue | |
if isinstance(arg_widget_val, bool): | |
if arg_widget_val: | |
command.append(arg_name) | |
else: | |
command.extend([arg_name, str(arg_widget_val)]) | |
# 3. Run script | |
log_output = ( | |
f"Starting Autoforge process at " | |
f"{datetime.now().strftime('%Y-%m-%d %H:%M:%S')}\n" | |
f"Output directory: {run_output_dir_val}\n" | |
f"Command: {' '.join(command)}\n\n" | |
) | |
yield create_empty_error_outputs(log_output) # clear UI and show header | |
process = subprocess.Popen( | |
command, | |
stdout=subprocess.PIPE, | |
stderr=subprocess.PIPE, | |
text=True, | |
bufsize=1, | |
universal_newlines=True, | |
) | |
# ---- helper: read stdout in a background thread ------------------- | |
from threading import Thread | |
from queue import Queue, Empty | |
def _enqueue(pipe, q): | |
"""Forward stdout/stderr to a queue, emitting on both '\n' and '\r'.""" | |
buf = "" | |
while True: | |
ch = pipe.read(1) # read a single character | |
if ch == "": # EOF | |
if buf: | |
q.put(buf) # flush whatever is left | |
break | |
buf += ch | |
if ch in ("\n", "\r"): # tqdm uses '\r' | |
q.put(buf) | |
buf = "" | |
pipe.close() | |
q_out = Queue() | |
Thread(target=_enqueue, args=(process.stdout, q_out), daemon=True).start() | |
Thread(target=_enqueue, args=(process.stderr, q_out), daemon=True).start() | |
preview_mtime = 0 | |
last_push = 0 | |
def _maybe_new_preview(): | |
""" | |
If vis_temp.png has a newer mtime than last time, copy it to a | |
stamped name (to defeat browser cache) and return that path. | |
Otherwise return gr.update() so the image stays as-is. | |
""" | |
from gradio import update # local import for clarity | |
nonlocal preview_mtime | |
src = os.path.join(run_output_dir_val, "vis_temp.png") | |
if not os.path.exists(src): | |
return update() # nothing new, keep old | |
mtime = os.path.getmtime(src) | |
if mtime <= preview_mtime: # unchanged | |
return update() # → no UI update | |
return src # → refresh image | |
# ---- main loop: poll every 0.5 s ---------------------------------- | |
while process.poll() is None or not q_out.empty(): | |
# drain whatever is waiting in stdout | |
try: | |
while True: | |
log_output += q_out.get_nowait() | |
except Empty: | |
pass | |
now = time.time() | |
if now - last_push >= 1.0: # 500 ms tick | |
current_preview = _maybe_new_preview() | |
yield ( | |
log_output, | |
current_preview, | |
gr.update(), # ### ZIP PATCH: placeholder for zip widget | |
) | |
last_push = now | |
time.sleep(0.05) # keep CPU load low | |
return_code = process.wait() | |
log_output += ( | |
"\nAutoforge process completed successfully!" | |
if return_code == 0 | |
else f"\nAutoforge process failed with exit code {return_code}." | |
) | |
# make sure we show the final preview (if any) | |
final_preview = _maybe_new_preview() or os.path.join( | |
run_output_dir_val, "final_model.png" | |
) | |
zip_base = os.path.join( | |
run_output_dir_val, "autoforge_results" | |
) # ### ZIP PATCH | |
zip_path = shutil.make_archive(zip_base, "zip", run_output_dir_val) | |
# 4. Prepare output file paths | |
png_path = os.path.join(run_output_dir_val, "final_model.png") | |
stl_path = os.path.join(run_output_dir_val, "final_model.stl") | |
txt_path = os.path.join(run_output_dir_val, "swap_instructions.txt") | |
hfp_path = os.path.join(run_output_dir_val, "project_file.hfp") | |
out_png = png_path if os.path.exists(png_path) else None | |
out_stl = stl_path if os.path.exists(stl_path) else None | |
out_txt = txt_path if os.path.exists(txt_path) else None | |
out_hfp = hfp_path if os.path.exists(hfp_path) else None | |
if out_png is None: | |
log_output += "\nWarning: final_model.png not found in output." | |
yield ( | |
log_output, # progress_output | |
out_png, # final_image_preview | |
gr.update( | |
value=zip_path, visible=True, interactive=True | |
), # ### ZIP PATCH: download_zip | |
) | |
run_inputs = [filament_df_state, input_image_component] + [ | |
accordion_params_dict[name] for name in accordion_params_ordered_names | |
] | |
run_outputs = [ | |
progress_output, | |
final_image_preview, | |
download_zip, # ### ZIP PATCH: only three outputs now | |
] | |
run_button.click(execute_autoforge_script, inputs=run_inputs, outputs=run_outputs) | |
css = """ #run_button_full_width { width: 100%; } """ | |
if __name__ == "__main__": | |
if not os.path.exists(DEFAULT_MATERIALS_CSV): | |
print(f"Creating default filament file: {DEFAULT_MATERIALS_CSV}") | |
try: | |
initial_df.to_csv(DEFAULT_MATERIALS_CSV, index=False) | |
except Exception as e: | |
print(f"Could not write default {DEFAULT_MATERIALS_CSV}: {e}") | |
print("To run the UI, execute: python app.py") # Corrected to python app.py | |
demo.queue().launch(share=False) | |