Spaces:
Running
on
Zero
Running
on
Zero
File size: 30,512 Bytes
0531be0 91a801a b20cbc9 91a801a b20cbc9 91a801a b20cbc9 91a801a 0531be0 91a801a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 |
import uuid
import gradio as gr
import pandas as pd
import os
import subprocess
import time
import shutil
import sys
from datetime import datetime
import re
from PIL import Image
# --- Configuration ---
#AUTFORGE_SCRIPT_PATH = "auto_forge.py" # Make sure this points to your script
DEFAULT_MATERIALS_CSV = "default_materials.csv"
GRADIO_OUTPUT_BASE_DIR = "output"
os.makedirs(GRADIO_OUTPUT_BASE_DIR, exist_ok=True)
REQUIRED_SCRIPT_COLS = ["Brand", " Name", " TD", " Color"]
DISPLAY_COL_MAP = {
"Brand": "Brand",
" Name": "Name",
" TD": "TD",
" Color": "Color (Hex)",
}
def ensure_required_cols(df, *, in_display_space):
"""
Return a copy of *df* with every required column present.
If *in_display_space* is True we use the display names
(Brand, Name, TD, Color (Hex)); otherwise we use the script names.
"""
target_cols = (
DISPLAY_COL_MAP if in_display_space else {k: k for k in REQUIRED_SCRIPT_COLS}
)
df_fixed = df.copy()
for col_script, col_display in target_cols.items():
if col_display not in df_fixed.columns:
# sensible defaults
if "TD" in col_display:
default = 0.0
elif "Color" in col_display:
default = "#000000"
elif "Owned" in col_display: # NEW
default = "false"
else:
default = ""
df_fixed[col_display] = default
# order columns nicely
return df_fixed[list(target_cols.values())]
def rgba_to_hex(col: str) -> str:
"""
Turn 'rgba(r, g, b, a)' or 'rgb(r, g, b)' into '#RRGGBB'.
If the input is already a hex code or anything unexpected,
return it unchanged.
"""
if not isinstance(col, str):
return col
col = col.strip()
if col.startswith("#"): # already fine
return col.upper()
m = re.match(
r"rgba?\(\s*([\d.]+)\s*,\s*([\d.]+)\s*,\s*([\d.]+)(?:\s*,\s*[\d.]+)?\s*\)",
col,
)
if not m:
return col # not something we recognise
r, g, b = (int(float(x)) for x in m.groups()[:3])
return "#{:02X}{:02X}{:02X}".format(r, g, b)
# --- Helper Functions ---
def get_script_args_info(exclude_args=None):
if exclude_args is None:
exclude_args = []
all_args_info = [
# input_image is handled separately in the UI
{
"name": "--iterations",
"type": "number",
"default": 2000,
"help": "Number of optimization iterations",
},
{
"name": "--layer_height",
"type": "number",
"default": 0.04,
"step": 0.01,
"help": "Layer thickness in mm",
},
{
"name": "--max_layers",
"type": "number",
"default": 75,
"precision": 0,
"help": "Maximum number of layers",
},
{
"name": "--learning_rate",
"type": "number",
"default": 0.015,
"step": 0.001,
"help": "Learning rate for optimization",
},
{
"name": "--background_height",
"type": "number",
"default": 0.4,
"step": 0.01,
"help": "Height of the background in mm",
},
{
"name": "--background_color",
"type": "colorpicker",
"default": "#000000",
"help": "Background color",
},
{
"name": "--stl_output_size",
"type": "number",
"default": 100,
"precision": 0,
"help": "Size of the longest dimension of the output STL file in mm",
},
{
"name": "--nozzle_diameter",
"type": "number",
"default": 0.4,
"step": 0.1,
"help": "Diameter of the printer nozzle in mm",
},
{
"name": "--pruning_max_colors",
"type": "number",
"default": 10,
"precision": 0,
"help": "Max number of colors allowed after pruning",
},
{
"name": "--pruning_max_swaps",
"type": "number",
"default": 20,
"precision": 0,
"help": "Max number of swaps allowed after pruning",
},
{
"name": "--pruning_max_layer",
"type": "number",
"default": 75,
"precision": 0,
"help": "Max number of layers allowed after pruning",
},
{
"name": "--warmup_fraction",
"type": "slider",
"default": 1.0,
"min": 0.0,
"max": 1.0,
"step": 0.01,
"help": "Fraction of iterations for keeping the tau at the initial value",
},
{
"name": "--learning_rate_warmup_fraction",
"type": "slider",
"default": 0.25,
"min": 0.0,
"max": 1.0,
"step": 0.01,
"help": "Fraction of iterations that the learning rate is increasing (warmup)",
},
# {
# "name": "--init_tau",
# "type": "number",
# "default": 1.0,
# "help": "Initial tau value for Gumbel-Softmax",
# },
# {
# "name": "--final_tau",
# "type": "number",
# "default": 0.01,
# "help": "Final tau value for Gumbel-Softmax",
# },
# {
# "name": "--min_layers",
# "type": "number",
# "default": 0,
# "precision": 0,
# "help": "Minimum number of layers. Used for pruning.",
# },
{
"name": "--early_stopping",
"type": "number",
"default": 1500,
"precision": 0,
"help": "Number of steps without improvement before stopping",
},
{
"name": "--random_seed",
"type": "number",
"default": 0,
"precision": 0,
"help": "Specify the random seed, or use 0 for automatic generation",
},
{
"name": "--num_init_rounds",
"type": "number",
"default": 32,
"precision": 0,
"help": "Number of rounds to choose the starting height map from.",
},
]
return [arg for arg in all_args_info if arg["name"] not in exclude_args]
# Initial filament data
initial_filament_data = {
"Brand": ["Generic", "Generic", "Generic"],
" Name": ["PLA Black", "PLA Grey", "PLA White"],
" TD": [1.0, 1.0, 1.0],
" Color": ["#000000", "#808080", "#FFFFFF"],
" Owned": ["true", "true", "true"], # β add
}
initial_df = pd.DataFrame(initial_filament_data)
if os.path.exists(DEFAULT_MATERIALS_CSV):
try:
initial_df = pd.read_csv(DEFAULT_MATERIALS_CSV)
for col in ["Brand", " Name", " TD", " Color"]:
if col not in initial_df.columns:
initial_df[col] = None
initial_df = initial_df[["Brand", " Name", " TD", " Color"]].astype(
{" TD": float, " Color": str}
)
except Exception as e:
print(f"Warning: Could not load {DEFAULT_MATERIALS_CSV}: {e}. Using default.")
initial_df = pd.DataFrame(initial_filament_data)
else:
initial_df.to_csv(DEFAULT_MATERIALS_CSV, index=False)
# Helper for creating an empty 10-tuple for error returns
def create_empty_error_outputs(log_message=""):
return (
log_message, # progress_output
None, # final_image_preview
gr.update(visible=False, interactive=False), # ### ZIP: download_zip
)
# --- Gradio UI Definition ---
with gr.Blocks(theme=gr.themes.Soft()) as demo:
gr.Markdown("# Autoforge Web UI")
filament_df_state = gr.State(initial_df.copy())
current_run_output_dir = gr.State(None)
with gr.Tabs():
with gr.TabItem("Filament Management"):
gr.Markdown(
'Manage your filament list. This list will be saved as a CSV and used by the Autoforge process. \n To remove a filament simply rightclick on any of the fields and select "Delete Row"'
)
with gr.Row():
load_csv_button = gr.UploadButton(
"Load Filaments CSV", file_types=[".csv"]
)
save_csv_button = gr.Button("Save Current Filaments to CSV")
filament_table = gr.DataFrame(
value=ensure_required_cols(
initial_df.copy().rename(
columns={" Name": "Name", " TD": "TD", " Color": "Color (Hex)"}
),
in_display_space=True,
),
headers=["Brand", "Name", "TD", "Color (Hex)"],
datatype=["str", "str", "number", "str"],
interactive=True,
label="Filaments",
)
gr.Markdown("### Add New Filament")
with gr.Row():
new_brand = gr.Textbox(label="Brand")
new_name = gr.Textbox(label="Name")
with gr.Row():
new_td = gr.Number(
label="TD (Transmission/Opacity)",
value=1.0,
minimum=0,
maximum=100,
step=0.1,
)
new_color_hex = gr.ColorPicker(label="Color", value="#FF0000")
add_filament_button = gr.Button("Add Filament to Table")
download_csv_trigger = gr.File(
label="Download Filament CSV", visible=False, interactive=False
)
def update_filament_df_state_from_table(display_df):
display_df = ensure_required_cols(display_df, in_display_space=True)
# make sure every colour is hex
if "Color (Hex)" in display_df.columns:
display_df["Color (Hex)"] = display_df["Color (Hex)"].apply(
rgba_to_hex
)
script_df = display_df.rename(
columns={"Name": " Name", "TD": " TD", "Color (Hex)": " Color"}
)
script_df = ensure_required_cols(script_df, in_display_space=False)
filament_df_state.value = script_df
def add_filament_to_table(current_display_df, brand, name, td, color_hex):
if not brand or not name:
gr.Warning("Brand and Name cannot be empty.")
return current_display_df
color_hex = rgba_to_hex(color_hex) # <-- new line
new_row = pd.DataFrame(
[{"Brand": brand, "Name": name, "TD": td, "Color (Hex)": color_hex}]
)
updated_display_df = pd.concat(
[current_display_df, new_row], ignore_index=True
)
update_filament_df_state_from_table(updated_display_df)
return updated_display_df
def load_filaments_from_csv_upload(file_obj):
if file_obj is None:
current_script_df = filament_df_state.value
if current_script_df is not None and not current_script_df.empty:
return current_script_df.rename(
columns={
" Name": "Name",
" TD": "TD",
" Color": "Color (Hex)",
}
)
return initial_df.copy().rename(
columns={" Name": "Name", " TD": "TD", " Color": "Color (Hex)"}
)
try:
loaded_script_df = pd.read_csv(file_obj.name)
loaded_script_df = ensure_required_cols(
loaded_script_df, in_display_space=False
)
expected_cols = ["Brand", " Name", " TD", " Color"]
if not all(
col in loaded_script_df.columns for col in expected_cols
):
gr.Error(
f"CSV must contain columns: {', '.join(expected_cols)}. Found: {loaded_script_df.columns.tolist()}"
)
current_script_df = filament_df_state.value
if (
current_script_df is not None
and not current_script_df.empty
):
return current_script_df.rename(
columns={
" Name": "Name",
" TD": "TD",
" Color": "Color (Hex)",
}
)
return initial_df.copy().rename(
columns={
" Name": "Name",
" TD": "TD",
" Color": "Color (Hex)",
}
)
filament_df_state.value = loaded_script_df.copy()
return loaded_script_df.rename(
columns={" Name": "Name", " TD": "TD", " Color": "Color (Hex)"}
)
except Exception as e:
gr.Error(f"Error loading CSV: {e}")
current_script_df = filament_df_state.value
if current_script_df is not None and not current_script_df.empty:
return current_script_df.rename(
columns={
" Name": "Name",
" TD": "TD",
" Color": "Color (Hex)",
}
)
return initial_df.copy().rename(
columns={" Name": "Name", " TD": "TD", " Color": "Color (Hex)"}
)
def save_filaments_to_file_for_download(current_script_df_from_state):
if (
current_script_df_from_state is None
or current_script_df_from_state.empty
):
gr.Warning("Filament table is empty. Nothing to save.")
return None
df_to_save = current_script_df_from_state.copy()
required_cols = ["Brand", " Name", " TD", " Color"]
if not all(col in df_to_save.columns for col in required_cols):
gr.Error(
f"Cannot save. DataFrame missing required script columns. Expected: {required_cols}. Found: {df_to_save.columns.tolist()}"
)
return None
temp_dir = os.path.join(GRADIO_OUTPUT_BASE_DIR, "_temp_downloads")
os.makedirs(temp_dir, exist_ok=True)
temp_filament_csv_path = os.path.join(
temp_dir,
f"filaments_{datetime.now().strftime('%Y%m%d_%H%M%S')}.csv",
)
try:
df_to_save.to_csv(temp_filament_csv_path, index=False)
gr.Info("Filaments prepared for download.")
return gr.File(
value=temp_filament_csv_path,
label="Download Filament CSV",
interactive=True,
visible=True,
)
except Exception as e:
gr.Error(f"Error saving CSV for download: {e}")
return None
filament_table.change(
update_filament_df_state_from_table,
inputs=[filament_table],
outputs=None,
queue=False,
)
add_filament_button.click(
add_filament_to_table,
inputs=[filament_table, new_brand, new_name, new_td, new_color_hex],
outputs=[filament_table],
)
load_csv_button.upload(
load_filaments_from_csv_upload,
inputs=[load_csv_button],
outputs=[filament_table],
)
save_csv_button.click(
save_filaments_to_file_for_download,
inputs=[filament_df_state],
outputs=[download_csv_trigger],
)
with gr.TabItem("Run Autoforge"):
accordion_params_dict = {}
accordion_params_ordered_names = []
with gr.Row():
with gr.Column(scale=1):
gr.Markdown("### Input Image (Required)")
input_image_component = gr.Image(
type="filepath",
image_mode="RGBA",
label="Upload Image",
sources=["upload"],
interactive=True,
)
with gr.Column(scale=2):
gr.Markdown("### Preview")
with gr.Accordion("Progress & Output", open=True):
final_image_preview = gr.Image(
label="Model Preview",
type="filepath",
interactive=False,
)
with gr.Row():
download_zip = gr.File( # was visible=True
label="Download all results (.zip)",
interactive=True,
visible=False,
)
with gr.Row():
with gr.Accordion("Adjust Autoforge Parameters", open=False):
args_for_accordion = get_script_args_info(
exclude_args=["--input_image"]
)
for arg in args_for_accordion:
label, info, default_val = (
f"{arg['name']}",
arg["help"],
arg.get("default"),
)
if arg["type"] == "number":
accordion_params_dict[arg["name"]] = gr.Number(
label=label,
value=default_val,
info=info,
minimum=arg.get("min"),
maximum=arg.get("max"),
step=arg.get(
"step",
0.001 if isinstance(default_val, float) else 1,
),
precision=arg.get("precision", None),
)
elif arg["type"] == "slider":
accordion_params_dict[arg["name"]] = gr.Slider(
label=label,
value=default_val,
info=info,
minimum=arg.get("min", 0),
maximum=arg.get("max", 1),
step=arg.get("step", 0.01),
)
elif arg["type"] == "checkbox":
accordion_params_dict[arg["name"]] = gr.Checkbox(
label=label, value=default_val, info=info
)
elif arg["type"] == "colorpicker":
accordion_params_dict[arg["name"]] = gr.ColorPicker(
label=label, value=default_val, info=info
)
else:
accordion_params_dict[arg["name"]] = gr.Textbox(
label=label, value=str(default_val), info=info
)
accordion_params_ordered_names.append(arg["name"])
run_button = gr.Button(
"Run Autoforge Process",
variant="primary",
elem_id="run_button_full_width",
)
progress_output = gr.Textbox(
label="Console Output",
lines=15,
autoscroll=True,
show_copy_button=False,
)
# --- Backend Function for Running the Script ---
def execute_autoforge_script(
current_filaments_df_state_val, input_image_path, *accordion_param_values
):
# 0. Validate Inputs
if (
not input_image_path
): # Covers None and empty string from gr.Image(type="filepath")
gr.Error("Input Image is required! Please upload an image.")
return create_empty_error_outputs("Error: Input Image is required!")
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S") + "_" + str(uuid.uuid4())
run_output_dir_val = os.path.join(GRADIO_OUTPUT_BASE_DIR, f"run_{timestamp}")
os.makedirs(run_output_dir_val, exist_ok=True)
current_run_output_dir.value = run_output_dir_val
# 1. Save current filaments
if (
current_filaments_df_state_val is None
or current_filaments_df_state_val.empty
):
gr.Error("Filament table is empty. Please add filaments.")
return create_empty_error_outputs("Error: Filament table is empty.")
temp_filament_csv = os.path.join(run_output_dir_val, "materials.csv")
df_to_save = current_filaments_df_state_val.copy()
required_cols = ["Brand", " Name", " TD", " Color"]
missing_cols = [col for col in required_cols if col not in df_to_save.columns]
if missing_cols:
err_msg = (
f"Error: Filament data is missing columns: {', '.join(missing_cols)}."
)
gr.Error(err_msg)
return create_empty_error_outputs(err_msg)
try:
df_to_save.to_csv(temp_filament_csv, index=False)
except Exception as e:
err_msg = f"Error saving temporary filament CSV: {e}"
gr.Error(err_msg)
return create_empty_error_outputs(err_msg)
# 2. Construct command
python_executable = sys.executable or "python"
command = ["autoforge",]
command.extend(["--csv_file", temp_filament_csv])
command.extend(["--output_folder", run_output_dir_val])
command.extend(["--disable_visualization_for_gradio","1"])
base_filename = os.path.basename(input_image_path)
script_input_image_path = os.path.join(run_output_dir_val, base_filename)
try:
img = Image.open(input_image_path)
# decide where to store the image we pass to Autoforge
base_no_ext, _ = os.path.splitext(os.path.basename(input_image_path))
script_input_image_path = os.path.join(
run_output_dir_val, f"{base_no_ext}.png"
)
if img.mode in ("RGBA", "LA") or (
img.mode == "P" and "transparency" in img.info
):
# the uploaded file has an alpha channel β save it as PNG
img.save(script_input_image_path, format="PNG")
else:
# no alpha present β just copy the file in whatever format it was
script_input_image_path = os.path.join(
run_output_dir_val, os.path.basename(input_image_path)
)
shutil.copy(input_image_path, script_input_image_path)
command.extend(["--input_image", script_input_image_path])
except Exception as e:
err_msg = f"Error handling input image: {e}"
gr.Error(err_msg)
return create_empty_error_outputs(err_msg)
param_dict = dict(zip(accordion_params_ordered_names, accordion_param_values))
for arg_name, arg_widget_val in param_dict.items():
if arg_widget_val is None or arg_widget_val == "":
arg_info_list = [
item for item in get_script_args_info() if item["name"] == arg_name
] # get full list to check type
if (
arg_info_list
and arg_info_list[0]["type"] == "checkbox"
and arg_widget_val is False
):
continue
else:
continue
if isinstance(arg_widget_val, bool):
if arg_widget_val:
command.append(arg_name)
else:
command.extend([arg_name, str(arg_widget_val)])
# 3. Run script
log_output = (
f"Starting Autoforge process at "
f"{datetime.now().strftime('%Y-%m-%d %H:%M:%S')}\n"
f"Output directory: {run_output_dir_val}\n"
f"Command: {' '.join(command)}\n\n"
)
yield create_empty_error_outputs(log_output) # clear UI and show header
process = subprocess.Popen(
command,
stdout=subprocess.PIPE,
stderr=subprocess.PIPE,
text=True,
bufsize=1,
universal_newlines=True,
)
# ---- helper: read stdout in a background thread -------------------
from threading import Thread
from queue import Queue, Empty
def _enqueue(pipe, q):
"""Forward stdout/stderr to a queue, emitting on both '\n' and '\r'."""
buf = ""
while True:
ch = pipe.read(1) # read a single character
if ch == "": # EOF
if buf:
q.put(buf) # flush whatever is left
break
buf += ch
if ch in ("\n", "\r"): # tqdm uses '\r'
q.put(buf)
buf = ""
pipe.close()
q_out = Queue()
Thread(target=_enqueue, args=(process.stdout, q_out), daemon=True).start()
Thread(target=_enqueue, args=(process.stderr, q_out), daemon=True).start()
preview_mtime = 0
last_push = 0
def _maybe_new_preview():
"""
If vis_temp.png has a newer mtime than last time, copy it to a
stamped name (to defeat browser cache) and return that path.
Otherwise return gr.update() so the image stays as-is.
"""
from gradio import update # local import for clarity
nonlocal preview_mtime
src = os.path.join(run_output_dir_val, "vis_temp.png")
if not os.path.exists(src):
return update() # nothing new, keep old
mtime = os.path.getmtime(src)
if mtime <= preview_mtime: # unchanged
return update() # β no UI update
return src # β refresh image
# ---- main loop: poll every 0.5 s ----------------------------------
while process.poll() is None or not q_out.empty():
# drain whatever is waiting in stdout
try:
while True:
log_output += q_out.get_nowait()
except Empty:
pass
now = time.time()
if now - last_push >= 1.0: # 500 ms tick
current_preview = _maybe_new_preview()
yield (
log_output,
current_preview,
gr.update(), # ### ZIP PATCH: placeholder for zip widget
)
last_push = now
time.sleep(0.05) # keep CPU load low
return_code = process.wait()
log_output += (
"\nAutoforge process completed successfully!"
if return_code == 0
else f"\nAutoforge process failed with exit code {return_code}."
)
# make sure we show the final preview (if any)
final_preview = _maybe_new_preview() or os.path.join(
run_output_dir_val, "final_model.png"
)
zip_base = os.path.join(
run_output_dir_val, "autoforge_results"
) # ### ZIP PATCH
zip_path = shutil.make_archive(zip_base, "zip", run_output_dir_val)
# 4. Prepare output file paths
png_path = os.path.join(run_output_dir_val, "final_model.png")
stl_path = os.path.join(run_output_dir_val, "final_model.stl")
txt_path = os.path.join(run_output_dir_val, "swap_instructions.txt")
hfp_path = os.path.join(run_output_dir_val, "project_file.hfp")
out_png = png_path if os.path.exists(png_path) else None
out_stl = stl_path if os.path.exists(stl_path) else None
out_txt = txt_path if os.path.exists(txt_path) else None
out_hfp = hfp_path if os.path.exists(hfp_path) else None
if out_png is None:
log_output += "\nWarning: final_model.png not found in output."
yield (
log_output, # progress_output
out_png, # final_image_preview
gr.update(
value=zip_path, visible=True, interactive=True
), # ### ZIP PATCH: download_zip
)
run_inputs = [filament_df_state, input_image_component] + [
accordion_params_dict[name] for name in accordion_params_ordered_names
]
run_outputs = [
progress_output,
final_image_preview,
download_zip, # ### ZIP PATCH: only three outputs now
]
run_button.click(execute_autoforge_script, inputs=run_inputs, outputs=run_outputs)
css = """ #run_button_full_width { width: 100%; } """
if __name__ == "__main__":
if not os.path.exists(DEFAULT_MATERIALS_CSV):
print(f"Creating default filament file: {DEFAULT_MATERIALS_CSV}")
try:
initial_df.to_csv(DEFAULT_MATERIALS_CSV, index=False)
except Exception as e:
print(f"Could not write default {DEFAULT_MATERIALS_CSV}: {e}")
print("To run the UI, execute: python app.py") # Corrected to python app.py
demo.queue().launch(share=False)
|