Spaces:
Running
on
Zero
Running
on
Zero
File size: 44,224 Bytes
9d4ae64 83aa561 0531be0 6c28396 8df4053 14345d0 c1be18e 83aa561 8bf0664 e6d37b7 c1be18e 041fd85 a0e83f7 3d50d2f 651d505 26ecf5f 651d505 041fd85 651d505 a0e83f7 651d505 a0e83f7 651d505 c3effeb 83aa561 e6d37b7 54810a9 8513b12 54810a9 8513b12 54810a9 91a801a c0fb813 c1be18e 91a801a 8df4053 91a801a c57baa4 91a801a 17cbe46 91a801a afc20d4 91a801a afc20d4 91a801a 9b2f647 d80b409 9b2f647 91a801a 9fa6c9a 91a801a afc20d4 91a801a 2b5ee6f 91a801a 51f554e c214ec0 313e62a 8388e80 313e62a 8388e80 313e62a 2c24bbf 91a801a 9d4ae64 580e68f 9d4ae64 580e68f 9d4ae64 580e68f aa240c3 580e68f 71aa181 580e68f 9d4ae64 91a801a f896384 91a801a 643e04c cd8bafc 643e04c cd8bafc aa240c3 cd8bafc 91a801a c417fc7 9d4ae64 c417fc7 91a801a 9d4ae64 91a801a 643e04c 91a801a 323973b 91a801a 323973b 91a801a 323973b 91a801a e392b76 91a801a 9d4ae64 91a801a cd8bafc 91a801a cd8bafc 2b5ee6f cd8bafc 7121f00 6a632fb d3ab058 7121f00 cd8bafc 91a801a 210cb7f 91a801a b20cbc9 91a801a b20cbc9 91a801a cd8bafc 91a801a cd8bafc 91a801a cd8bafc 2c24bbf cd8bafc 91a801a 51f554e 91a801a 210cb7f 91a801a 8388e80 bfb9b80 89f9d38 91a801a 210cb7f 91a801a 323973b 91a801a 0531be0 91a801a 323973b 91a801a 323973b 91a801a e392b76 91a801a 210cb7f 91a801a 210cb7f 91a801a e392b76 91a801a c8df84a 91a801a 54cc9d1 91a801a 83aa561 e6d37b7 83aa561 91a801a c214ec0 91a801a 2c24bbf c214ec0 b7dfb35 c214ec0 2c24bbf c214ec0 3296634 a3b42e1 3296634 8e4ef5f 3296634 8e4ef5f a3dae77 5da6ee2 735a33e 8e4ef5f a3dae77 735a33e 3296634 7f776d6 8e4ef5f 7f776d6 ca96a6b 7f776d6 043831b a27912a 043831b c214ec0 91a801a d3ab058 a27912a 91a801a 9f2e1e5 91a801a d3ab058 2c24bbf 91a801a 97dd22d 83aa561 91a801a 83aa561 2c24bbf 91a801a 2c24bbf 91a801a 83aa561 91a801a e605b0c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 |
import json
import string
import uuid
import os
import logging
import zipfile
import importlib
import sentry_sdk
import wandb
from contextlib import redirect_stdout, redirect_stderr
from sentry_sdk import capture_exception
from sentry_sdk.integrations.logging import LoggingIntegration
from sentry_sdk.integrations.starlette import StarletteIntegration
from sentry_sdk.integrations.fastapi import FastApiIntegration
import spaces
dsn = os.getenv("SENTRY_DSN")
if not dsn:
print("WARNING: SENTRY_DSN not set – Sentry disabled")
else:
sentry_sdk.init(
dsn=dsn,
traces_sample_rate=0.1,
integrations=[
StarletteIntegration(
failed_request_status_codes={
400,
422,
*range(500, 599),
}, # also log 4xx from Gradio
),
LoggingIntegration(
level=logging.INFO, # breadcrumb level
event_level=logging.ERROR,
),
FastApiIntegration(),
],
release=os.getenv("HF_SPACE_VERSION", "dev"),
environment="hf_space",
)
sentry_sdk.capture_message("🎉 Sentry is wired up!")
USE_WANDB = "WANDB_API_KEY" in os.environ
if USE_WANDB:
wandb.login(key=os.environ["WANDB_API_KEY"])
else:
print("Warning: WANDB_API_KEY not set. Skipping wandb logging.")
import gradio
import functools
from sentry_sdk import flush
orig_call_fn = gradio.blocks.Blocks.call_function # present in all 3.x & 4.x
@functools.wraps(orig_call_fn)
async def sentry_call_fn(self, *args, **kwargs):
try:
return await orig_call_fn(self, *args, **kwargs)
except Exception as exc:
capture_exception(exc)
flush(timeout=2)
raise
gradio.blocks.Blocks.call_function = sentry_call_fn
import gradio as gr
import pandas as pd
import os
import subprocess
import time
import sys
from datetime import datetime
import re
# --- Configuration ---
#AUTFORGE_SCRIPT_PATH = "auto_forge.py" # Make sure this points to your script
DEFAULT_MATERIALS_CSV = "default_materials.csv"
GRADIO_OUTPUT_BASE_DIR = "output"
os.makedirs(GRADIO_OUTPUT_BASE_DIR, exist_ok=True)
REQUIRED_SCRIPT_COLS = ["Brand", " Name", " TD", " Color"]
DISPLAY_COL_MAP = {
"Brand": "Brand",
" Name": "Name",
" TD": "TD",
" Color": "Color (Hex)",
}
def exc_text(exc: BaseException) -> str:
"""
Return the human-readable message of *exc*.
Falls back to the class name if the message is empty.
"""
txt = str(exc).strip()
if txt:
return txt
if exc.args:
return " ".join(str(a) for a in exc.args).strip()
return exc.__class__.__name__
def ensure_required_cols(df, *, in_display_space):
"""
Return a copy of *df* with every required column present.
If *in_display_space* is True we use the display names
(Brand, Name, TD, Color (Hex)); otherwise we use the script names.
"""
target_cols = (
DISPLAY_COL_MAP if in_display_space else {k: k for k in REQUIRED_SCRIPT_COLS}
)
df_fixed = df.copy()
for col_script, col_display in target_cols.items():
if col_display not in df_fixed.columns:
# sensible defaults
if "TD" in col_display:
default = 0.0
elif "Color" in col_display:
default = "#000000"
elif "Owned" in col_display: # NEW
default = "false"
else:
default = ""
df_fixed[col_display] = default
# order columns nicely
return df_fixed[list(target_cols.values())]
def rgba_to_hex(col: str) -> str:
"""
Turn 'rgba(r, g, b, a)' or 'rgb(r, g, b)' into '#RRGGBB'.
If the input is already a hex code or anything unexpected,
return it unchanged.
"""
if not isinstance(col, str):
return col
col = col.strip()
if col.startswith("#"): # already fine
return col.upper()
m = re.match(
r"rgba?\(\s*([\d.]+)\s*,\s*([\d.]+)\s*,\s*([\d.]+)(?:\s*,\s*[\d.]+)?\s*\)",
col,
)
if not m:
return col # not something we recognise
r, g, b = (int(float(x)) for x in m.groups()[:3])
return "#{:02X}{:02X}{:02X}".format(r, g, b)
def zip_dir_no_compress(src_dir: str, dest_zip: str) -> str:
"""Create *dest_zip* from *src_dir* using no compression (ZIP_STORED)."""
t0 = time.time()
with zipfile.ZipFile(dest_zip, "w",
compression=zipfile.ZIP_STORED,
allowZip64=True) as zf:
for root, _, files in os.walk(src_dir):
for fname in files:
fpath = os.path.join(root, fname)
# keep folder structure inside the archive but drop the leading path
zf.write(fpath, os.path.relpath(fpath, src_dir))
print(f"Zipping finished in {time.time() - t0:.1f}s")
return dest_zip
# --- Helper Functions ---
def get_script_args_info(exclude_args=None):
if exclude_args is None:
exclude_args = []
all_args_info = [
# input_image is handled separately in the UI
{
"name": "--iterations",
"type": "number",
"default": 4000,
"help": "Number of optimization iterations",
},
{
"name": "--layer_height",
"type": "number",
"default": 0.04,
"step": 0.01,
"help": "Layer thickness in mm",
},
{
"name": "--max_layers",
"type": "number",
"default": 75,
"precision": 0,
"help": "Maximum number of layers",
},
{
"name": "--learning_rate",
"type": "number",
"default": 0.015,
"step": 0.001,
"help": "Learning rate for optimization",
},
{
"name": "--background_height",
"type": "number",
"default": 0.4,
"step": 0.01,
"help": "Height of the background in mm",
},
{
"name": "--background_color",
"type": "colorpicker",
"default": "#000000",
"help": "Background color",
},
{
"name": "--stl_output_size",
"type": "number",
"default": 100,
"precision": 0,
"help": "Size of the longest dimension of the output STL file in mm",
},
{
"name": "--nozzle_diameter",
"type": "number",
"default": 0.4,
"step": 0.1,
"help": "Diameter of the printer nozzle in mm",
},
{
"name": "--pruning_max_colors",
"type": "number",
"default": 100,
"precision": 0,
"help": "Max number of colors allowed after pruning",
},
{
"name": "--pruning_max_swaps",
"type": "number",
"default": 20,
"precision": 0,
"help": "Max number of swaps allowed after pruning",
},
{
"name": "--pruning_max_layer",
"type": "number",
"default": 75,
"precision": 0,
"help": "Max number of layers allowed after pruning",
},
{
"name": "--warmup_fraction",
"type": "slider",
"default": 1.0,
"min": 0.0,
"max": 1.0,
"step": 0.01,
"help": "Fraction of iterations for keeping the tau at the initial value",
},
{
"name": "--learning_rate_warmup_fraction",
"type": "slider",
"default": 0.01,
"min": 0.0,
"max": 1.0,
"step": 0.01,
"help": "Fraction of iterations that the learning rate is increasing (warmup)",
},
{
"name": "--early_stopping",
"type": "number",
"default": 5000,
"precision": 0,
"help": "Number of steps without improvement before stopping",
},
{
"name": "--fast_pruning_percent",
"type": "slider",
"default": 0.05,
"min": 0.0,
"max": 1.0,
"step": 0.01,
"help": "Percentage of increment search for fast pruning. If unsure just keep it at 0.05 (5%).",
},
{
"name": "--random_seed",
"type": "number",
"default": 0,
"precision": 0,
"help": "Specify the random seed, or use 0 for automatic generation",
},
{
"name": "--num_init_rounds",
"type": "number",
"default": 8,
"precision": 0,
"help": "Number of rounds to choose the starting height map from.",
},
{
"name": "--num_init_cluster_layers",
"type": "number",
"default": 35,
"precision": 0,
"help": "Number of layer clusters for the initialization.",
},
]
return [arg for arg in all_args_info if arg["name"] not in exclude_args]
# Initial filament data
initial_filament_data = {
"Brand": ["Generic", "Generic", "Generic","Generic","Generic","Generic",],
" Name": ["PLA Black", "PLA Grey", "PLA White","PLA Red","PLA Green","PLA Blue"],
" TD": [5.0, 5.0, 5.0, 5.0, 5.0, 5.0],
" Color": ["#000000", "#808080", "#FFFFFF","#FF0000","#00FF00","#0000FF"],
" Owned": ["true", "true", "true", "true", "true", "true"], # ← add
}
initial_df = pd.DataFrame(initial_filament_data)
if os.path.exists(DEFAULT_MATERIALS_CSV):
try:
initial_df = pd.read_csv(DEFAULT_MATERIALS_CSV)
for col in ["Brand", " Name", " TD", " Color"]:
if col not in initial_df.columns:
initial_df[col] = None
initial_df = initial_df[["Brand", " Name", " TD", " Color"]].astype(
{" TD": float, " Color": str}
)
except Exception as e:
print(f"Warning: Could not load {DEFAULT_MATERIALS_CSV}: {e}. Using default.")
initial_df = pd.DataFrame(initial_filament_data)
else:
initial_df.to_csv(DEFAULT_MATERIALS_CSV, index=False)
def run_autoforge_process(cmd, log_path):
"""Run AutoForge in-process and stream its console output to *log_path*."""
from joblib import parallel_backend
cli_args = cmd[1:] # skip the literal "autoforge"
autoforge_main = importlib.import_module("autoforge.__main__")
exit_code = 0
with open(log_path, "w", buffering=1, encoding="utf-8") as log_f, \
redirect_stdout(log_f), redirect_stderr(log_f), parallel_backend("threading", n_jobs=-1):
try:
sys.argv = ["autoforge"] + cli_args
autoforge_main.main() # runs until completion
except SystemExit as e: # AutoForge calls sys.exit()
exit_code = e.code
return exit_code
# Helper for creating an empty 10-tuple for error returns
def create_empty_error_outputs(log_message=""):
return (
log_message, # progress_output
None, # final_image_preview
gr.update(visible=False, interactive=False), # ### ZIP: download_zip
)
def load_filaments_from_json_upload(file_obj):
"""
Called when the user picks a .json file and converts it to the
script-style DataFrame expected by the rest of the app.
"""
# ── early-out when nothing was chosen ──────────────────────────────
if file_obj is None:
current_script_df = filament_df_state.value
if current_script_df is not None and not current_script_df.empty:
return current_script_df.rename(
columns={" Name": "Name", " TD": "TD", " Color": "Color (Hex)"}
)
return initial_df.copy().rename(
columns={" Name": "Name", " TD": "TD", " Color": "Color (Hex)"}
)
try:
with open(file_obj.name, "r", encoding="utf-8") as f:
data = json.load(f)
if isinstance(data, dict) and "Filaments" in data:
data = data["Filaments"]
df_loaded = pd.DataFrame(data)
# strip whitespace around every header first
df_loaded.columns = [c.strip() for c in df_loaded.columns]
# convert Hue-forge “nice” headers to the script headers that
# still carry a leading blank
rename_map = {
"Name": " Name",
"Transmissivity": " TD",
"Color": " Color",
}
df_loaded.rename(
columns={k: v for k, v in rename_map.items() if k in df_loaded.columns},
inplace=True,
)
if " TD" in df_loaded.columns:
df_loaded[" TD"] = pd.to_numeric(df_loaded[" TD"], errors="coerce").fillna(
0.0
)
# now make sure the usual helpers see exactly the expected headers
df_loaded = ensure_required_cols(df_loaded, in_display_space=False)
expected_cols = ["Brand", " Name", " TD", " Color"]
if not all(col in df_loaded.columns for col in expected_cols):
gr.Error(
f"JSON must contain keys/columns: {', '.join(expected_cols)}. "
f"Found: {df_loaded.columns.tolist()}"
)
return filament_table.value # keep the table unchanged
filament_df_state.value = df_loaded.copy()
return df_loaded.rename(
columns={" Name": "Name", " TD": "TD", " Color": "Color (Hex)"}
)
except Exception as e:
gr.Error(f"Error loading JSON: {e}")
return filament_table.value # keep current table on failure
# --- Gradio UI Definition ---
with gr.Blocks(theme=gr.themes.Soft()) as demo:
gr.Markdown("# [Autoforge](https://github.com/hvoss-techfak/AutoForge) Web UI")
filament_df_state = gr.State(initial_df.copy())
current_run_output_dir = gr.State(None)
with gr.Tabs():
with gr.TabItem("Filament Management"):
gr.Markdown(
'Manage your filament list here. This list will be used by Autoforge during the optimization process.'
)
gr.Markdown(
'If you have Hueforge, you can export your filaments under "Filaments -> Export" in the Hueforge software. Please make sure to select "CSV" instead of "JSON" during the export dialog.'
)
gr.Markdown(
'If you want to load your personal library of Hueforge filaments, you can also simply paste this path into your explorer address bar: %APPDATA%\HueForge\Filaments\ and import your "personal_library.json" using the "Load Filaments Json" button.'
)
gr.Markdown(
'To remove a filament simply right-click on any of the fields and select "Delete Row"'
)
gr.Markdown(
'Hint: If you have an AMS 3d printer try giving it your entire filament library and then set "pruning_max_colors" under "Autoforge Parameters" in the second tab to your number of AMS slots.'
' Autoforge will automatically select the best matching colors for your image.'
)
with gr.Row():
load_csv_button = gr.UploadButton(
"Load Filaments CSV", file_types=[".csv"]
)
load_json_button = gr.UploadButton( # NEW
"Load Filaments JSON", file_types=[".json"]
)
save_csv_button = gr.Button("Save Current Filaments to CSV")
filament_table = gr.DataFrame(
value=ensure_required_cols(
initial_df.copy().rename(
columns={" Name": "Name", " TD": "TD", " Color": "Color (Hex)"}
),
in_display_space=True,
),
headers=["Brand", "Name", "TD", "Color (Hex)"],
datatype=["str", "str", "number", "str"],
interactive=True,
label="Filaments",
)
gr.Markdown("## Add New Filament")
with gr.Row():
new_brand = gr.Textbox(label="Brand")
new_name = gr.Textbox(label="Name")
with gr.Row():
new_td = gr.Number(
label="TD (Transmission/Opacity)",
value=1.0,
minimum=0,
maximum=100,
step=0.1,
)
new_color_hex = gr.ColorPicker(label="Color", value="#FF0000")
add_filament_button = gr.Button("Add Filament to Table")
download_csv_trigger = gr.File(
label="Download Filament CSV", visible=False, interactive=False
)
def update_filament_df_state_from_table(display_df):
display_df = ensure_required_cols(display_df, in_display_space=True)
# make sure every colour is hex
if "Color (Hex)" in display_df.columns:
display_df["Color (Hex)"] = display_df["Color (Hex)"].apply(
rgba_to_hex
)
script_df = display_df.rename(
columns={"Name": " Name", "TD": " TD", "Color (Hex)": " Color"}
)
script_df = ensure_required_cols(script_df, in_display_space=False)
filament_df_state.value = script_df
def add_filament_to_table(current_display_df, brand, name, td, color_hex):
if not brand or not name:
gr.Warning("Brand and Name cannot be empty.")
return current_display_df
color_hex = rgba_to_hex(color_hex) # <-- new line
new_row = pd.DataFrame(
[{"Brand": brand, "Name": name, "TD": td, "Color (Hex)": color_hex}]
)
updated_display_df = pd.concat(
[current_display_df, new_row], ignore_index=True
)
update_filament_df_state_from_table(updated_display_df)
return updated_display_df
def load_filaments_from_csv_upload(file_obj):
if file_obj is None:
current_script_df = filament_df_state.value
if current_script_df is not None and not current_script_df.empty:
return current_script_df.rename(
columns={
" Name": "Name",
" TD": "TD",
" Color": "Color (Hex)",
}
)
return initial_df.copy().rename(
columns={" Name": "Name", " TD": "TD", " Color": "Color (Hex)"}
)
try:
loaded_script_df = pd.read_csv(file_obj.name)
loaded_script_df = ensure_required_cols(
loaded_script_df, in_display_space=False
)
expected_cols = ["Brand", " Name", " TD", " Color"]
if not all(
col in loaded_script_df.columns for col in expected_cols
):
gr.Error(
f"CSV must contain columns: {', '.join(expected_cols)}. Found: {loaded_script_df.columns.tolist()}"
)
capture_exception(
Exception(
f"CSV must contain columns: {', '.join(expected_cols)}. Found: {loaded_script_df.columns.tolist()}"
)
)
current_script_df = filament_df_state.value
if (
current_script_df is not None
and not current_script_df.empty
):
return current_script_df.rename(
columns={
" Name": "Name",
" TD": "TD",
" Color": "Color (Hex)",
}
)
return initial_df.copy().rename(
columns={
" Name": "Name",
" TD": "TD",
" Color": "Color (Hex)",
}
)
filament_df_state.value = loaded_script_df.copy()
return loaded_script_df.rename(
columns={" Name": "Name", " TD": "TD", " Color": "Color (Hex)"}
)
except Exception as e:
gr.Error(f"Error loading CSV: {e}")
capture_exception(e)
current_script_df = filament_df_state.value
if current_script_df is not None and not current_script_df.empty:
return current_script_df.rename(
columns={
" Name": "Name",
" TD": "TD",
" Color": "Color (Hex)",
}
)
return initial_df.copy().rename(
columns={" Name": "Name", " TD": "TD", " Color": "Color (Hex)"}
)
def save_filaments_to_file_for_download(current_script_df_from_state):
if (
current_script_df_from_state is None
or current_script_df_from_state.empty
):
gr.Warning("Filament table is empty. Nothing to save.")
return None
df_to_save = current_script_df_from_state.copy()
required_cols = ["Brand", " Name", " TD", " Color"]
if not all(col in df_to_save.columns for col in required_cols):
gr.Error(
f"Cannot save. DataFrame missing required script columns. Expected: {required_cols}. Found: {df_to_save.columns.tolist()}"
)
capture_exception(Exception(f"Missing columns: {df_to_save.columns.tolist()}"))
return None
temp_dir = os.path.join(GRADIO_OUTPUT_BASE_DIR, "_temp_downloads")
os.makedirs(temp_dir, exist_ok=True)
temp_filament_csv_path = os.path.join(
temp_dir,
f"filaments_{datetime.now().strftime('%Y%m%d_%H%M%S')}.csv",
)
try:
df_to_save.to_csv(temp_filament_csv_path, index=False)
gr.Info("Filaments prepared for download.")
return gr.File(
value=temp_filament_csv_path,
label="Download Filament CSV",
interactive=True,
visible=True,
)
except Exception as e:
capture_exception(e)
gr.Error(f"Error saving CSV for download: {e}")
return None
filament_table.change(
update_filament_df_state_from_table,
inputs=[filament_table],
outputs=None,
queue=False,
)
add_filament_button.click(
add_filament_to_table,
inputs=[filament_table, new_brand, new_name, new_td, new_color_hex],
outputs=[filament_table],
)
load_csv_button.upload(
load_filaments_from_csv_upload,
inputs=[load_csv_button],
outputs=[filament_table],
)
load_json_button.upload(
load_filaments_from_json_upload,
inputs=[load_json_button],
outputs=[filament_table],
)
save_csv_button.click(
save_filaments_to_file_for_download,
inputs=[filament_df_state],
outputs=[download_csv_trigger],
)
with gr.TabItem("Run Autoforge"):
accordion_params_dict = {}
accordion_params_ordered_names = []
gr.Markdown(
'Here you can upload an image, adjust the parameters and run the Autoforge process. The filaments from the "Filament Management" Tab are automatically used. After the process completes you can download the results at the bottom of the page.'
)
gr.Markdown(
'If you want to limit the number of colors or color swaps you can find the option under the "Autoforge Parameters" as "pruning_max_colors" and "pruning_max_swaps"'
)
gr.Markdown(
'Please note that huggingface enforces a maximum execution time of two minutes. Depending on your configuration (especially iteration count) it is possible to exceed this time limit. In that case you will see a "GPU Task aborted" error or simply "Error".'
' If you need more time, take a look at the [Autoforge Github Page](https://github.com/hvoss-techfak/AutoForge) to see how you can run the program locally, or pull the docker container for this project (upper right corner -> three dots -> "run locally")'
)
with gr.Row():
with gr.Column(scale=1):
gr.Markdown("### Input Image (Required)")
input_image_component = gr.Image( # keep transparency alive
type="pil", # <- no temporary JPEG cache
image_mode="RGBA", # tells Gradio to expect alpha
label="Upload Image",
sources=["upload"],
interactive=True,
)
with gr.Column(scale=2):
gr.Markdown("### Preview")
with gr.Accordion("Progress & Output", open=True):
final_image_preview = gr.Image(
label="Model Preview",
type="filepath",
interactive=False,
)
with gr.Row():
with gr.Accordion("Autoforge Parameters", open=False):
args_for_accordion = get_script_args_info(
exclude_args=["--input_image"]
)
for arg in args_for_accordion:
label, info, default_val = (
f"{arg['name']}",
arg["help"],
arg.get("default"),
)
if arg["type"] == "number":
accordion_params_dict[arg["name"]] = gr.Number(
label=label,
value=default_val,
info=info,
minimum=arg.get("min"),
maximum=arg.get("max"),
step=arg.get(
"step",
0.001 if isinstance(default_val, float) else 1,
),
precision=arg.get("precision", None),
)
elif arg["type"] == "slider":
accordion_params_dict[arg["name"]] = gr.Slider(
label=label,
value=default_val,
info=info,
minimum=arg.get("min", 0),
maximum=arg.get("max", 1),
step=arg.get("step", 0.01),
)
elif arg["type"] == "checkbox":
accordion_params_dict[arg["name"]] = gr.Checkbox(
label=label, value=default_val, info=info
)
elif arg["type"] == "colorpicker":
accordion_params_dict[arg["name"]] = gr.ColorPicker(
label=label, value=default_val, info=info
)
else:
accordion_params_dict[arg["name"]] = gr.Textbox(
label=label, value=str(default_val), info=info
)
accordion_params_ordered_names.append(arg["name"])
run_button = gr.Button(
"Run Autoforge Process",
variant="primary",
elem_id="run_button_full_width",
)
progress_output = gr.Textbox(
label="Console Output",
lines=15,
autoscroll=True,
show_copy_button=False,
)
with gr.Row():
download_results = gr.File(
label="Download results",
file_count="multiple",
interactive=True,
visible=False,
)
# --- Backend Function for Running the Script ---
@spaces.GPU(duration=120)
def execute_autoforge_script(
current_filaments_df_state_val, input_image, *accordion_param_values
):
log_output = []
# 0. Validate Inputs
if input_image is None:
gr.Error("Input Image is required! Please upload an image.")
capture_exception(Exception("Input Image is required!"))
return create_empty_error_outputs("Error: Input Image is required!")
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S") + "_" + str(uuid.uuid4())
run_output_dir_val = os.path.join(GRADIO_OUTPUT_BASE_DIR, f"run_{timestamp}")
os.makedirs(run_output_dir_val, exist_ok=True)
current_run_output_dir.value = run_output_dir_val
# 1. Save current filaments
if (
current_filaments_df_state_val is None
or current_filaments_df_state_val.empty
):
gr.Error("Filament table is empty. Please add filaments.")
capture_exception(
Exception("Filament table is empty. Please add filaments.")
)
return create_empty_error_outputs("Error: Filament table is empty.")
temp_filament_csv = os.path.join(run_output_dir_val, "materials.csv")
df_to_save = current_filaments_df_state_val.copy()
required_cols = ["Brand", " Name", " TD", " Color"]
missing_cols = [col for col in required_cols if col not in df_to_save.columns]
if missing_cols:
err_msg = (
f"Error: Filament data is missing columns: {', '.join(missing_cols)}."
)
gr.Error(err_msg)
capture_exception(
Exception(f"Filament data is missing columns: {', '.join(missing_cols)}.")
)
return create_empty_error_outputs(err_msg)
try:
df_to_save.to_csv(temp_filament_csv, index=False)
except Exception as e:
capture_exception(e)
err_msg = f"Error saving temporary filament CSV: {e}"
gr.Error(err_msg)
return create_empty_error_outputs(err_msg)
# 2. Construct command
python_executable = sys.executable or "python"
command = ["autoforge",]
command.extend(["--csv_file", temp_filament_csv])
command.extend(["--output_folder", run_output_dir_val])
command.extend(["--disable_visualization_for_gradio","1"])
try:
# decide where to store the image we pass to Autoforge
script_input_image_path = os.path.join(
run_output_dir_val, "input_image.png"
)
input_image.save(script_input_image_path, format="PNG")
command.extend(["--input_image", script_input_image_path])
except Exception as e:
capture_exception(e)
err_msg = f"Error handling input image: {e}"
gr.Error(err_msg)
return create_empty_error_outputs(err_msg)
param_dict = dict(zip(accordion_params_ordered_names, accordion_param_values))
for arg_name, arg_widget_val in param_dict.items():
if arg_widget_val is None or arg_widget_val == "":
arg_info_list = [
item for item in get_script_args_info() if item["name"] == arg_name
] # get full list to check type
if (
arg_info_list
and arg_info_list[0]["type"] == "checkbox"
and arg_widget_val is False
):
continue
else:
continue
if arg_name == "--background_color":
arg_widget_val = rgba_to_hex(arg_widget_val)
if isinstance(arg_widget_val, bool):
if arg_widget_val:
command.append(arg_name)
else:
command.extend([arg_name, str(arg_widget_val)])
# 3. Run script
log_output = [
"Starting Autoforge process at ",
f"{datetime.now().strftime('%Y-%m-%d %H:%M:%S')}\n",
f"Output directory: {run_output_dir_val}\n",
f"Command: {' '.join(command)}\n\n",
]
yield create_empty_error_outputs(log_output) # clear UI and show header
def _maybe_new_preview():
"""
If vis_temp.png has a newer mtime than last time, copy it to a
stamped name (to defeat browser cache) and return that path.
Otherwise return gr.update() so the image stays as-is.
"""
from gradio import update # local import for clarity
nonlocal preview_mtime
src = os.path.join(run_output_dir_val, "vis_temp.png")
if not os.path.exists(src):
return update() # nothing new, keep old
mtime = os.path.getmtime(src)
if mtime <= preview_mtime: # unchanged
return update() # → no UI update
return src # → refresh image
# ---- run Autoforge on the GPU in a helper thread ------------------
log_file = os.path.join(run_output_dir_val, "autoforge_live.log")
open(log_file, "w", encoding="utf-8").close()
cmd_str = " ".join(command)
sentry_sdk.capture_event(
{
"message": "Autoforge process started",
"level": "info",
"fingerprint": ["autoforge-process-start"], # every start groups here
"extra": {"command": cmd_str}, # still searchable
}
)
# simple thread that just calls the GPU helper and stores the exit code
import threading
class Worker(threading.Thread):
def __init__(self, cmd, log_path):
super().__init__(daemon=True)
self.cmd, self.log_path = cmd, log_path
self.returncode = None
def run(self):
try:
self.returncode = run_autoforge_process(self.cmd, self.log_path)
except Exception as e:
exc_str = exc_text(e)
self.exc = e
capture_exception(e) # still goes to Sentry
# make the error visible in the UI console
with open(self.log_path, "a", encoding="utf-8") as lf:
lf.write(
"\nERROR: {}. This usually means that you, your IP adress or the space has no free GPU "
"minutes left, or the process took too long due to too many filaments or changed parameters. Please clone the docker container, run it locally or wait for a bit.\n".format(exc_str)
)
gr.Error(
"ERROR: {}. This usually means that you, your IP adress or the the space has no free GPU "
"minutes left, or the process took too long due to too many filaments or changed parameters. Please clone the docker container, run it locally or wait for a bit.\n".format(exc_str)
)
# a non-zero code tells the outer loop something went wrong
self.returncode = -1
try:
worker = Worker(command, log_file)
worker.start()
preview_mtime = 0
last_push = 0
file_pos = 0 # how far we've read
while worker.is_alive() or file_pos < os.path.getsize(log_file):
# read any new console text
with open(log_file, "r", encoding="utf-8") as lf:
lf.seek(file_pos)
new_txt = lf.read()
file_pos = lf.tell()
log_output += new_txt
now = time.time()
if now - last_push >= 1.0: # one-second UI tick
current_preview = _maybe_new_preview()
yield (
"".join(log_output),
current_preview,
gr.update(), # placeholder for download widget
)
last_push = now
time.sleep(0.05)
worker.join() # make sure it’s done
except RuntimeError as e:
# Show toast to user
log_output += repr(e)
gr.Error(str(e)) # <-- this is the toast
capture_exception(e)
with open(log_file, "r", encoding="utf-8") as lf:
lf.seek(file_pos)
new_txt = lf.read()
file_pos = lf.tell()
log_output += new_txt
yield (
"".join(log_output),
current_preview,
gr.update(), # placeholder for download widget
)
return create_empty_error_outputs(str(e))
if getattr(worker, "exc", None) is not None:
# worker.exc will be the ZeroGPU / scheduler error
err_msg = f"GPU run failed: {worker.exc}"
log_output += f"\n{err_msg}\n"
gr.Error(err_msg) # toast
yield ( # push the message into the textbox
"".join(log_output),
_maybe_new_preview(),
gr.update(),
)
return # stop the coroutine cleanly
# If the GPU scheduler threw, we already wrote the text into the log.
# Just read the tail once more so it reaches the UI textbox.
with open(log_file, "r", encoding="utf-8") as lf:
lf.seek(file_pos)
log_output += lf.read()
return_code = worker.returncode
try:
sentry_sdk.add_attachment(
path=log_file,
filename="autoforge.log",
content_type="text/plain",
)
except Exception as e:
capture_exception(e)
if worker.returncode != 0:
err_msg = (
f"Autoforge exited with code {worker.returncode}\n"
"See the console output above for details."
)
log_output += f"\n{err_msg}\n"
gr.Error(err_msg)
yield (
"".join(log_output),
_maybe_new_preview(),
gr.update(),
)
return
log_output += (
"\nAutoforge process completed successfully!"
if return_code == 0
else f"\nAutoforge process failed with exit code {return_code}."
)
log_str = " ".join(log_output)
files_to_offer = [
p
for p in [
os.path.join(run_output_dir_val, "final_model.png"),
os.path.join(run_output_dir_val, "final_model.stl"),
os.path.join(run_output_dir_val, "swap_instructions.txt"),
os.path.join(run_output_dir_val, "project_file.hfp"),
]
if os.path.exists(p)
]
png_path = os.path.join(run_output_dir_val, "final_model.png")
out_png = png_path if os.path.exists(png_path) else None
if out_png is None:
log_output += "\nWarning: final_model.png not found in output."
sentry_sdk.capture_event( # moved inside the same scope
{
"message": "Autoforge process finished",
"level": "info",
"fingerprint": ["autoforge-process-finished"],
"extra": {"log": log_str},
}
)
if USE_WANDB:
run = None
try:
run = wandb.init(
project="autoforge",
name=f"run_{timestamp}",
notes="Autoforge Web UI run",
tags=["autoforge", "gradio"],
)
wlogs= {"input_image": wandb.Image(script_input_image_path),}
if out_png:
wlogs["output_image"] = wandb.Image(out_png)
material_csv = pd.read_csv(temp_filament_csv)
table = wandb.Table(dataframe=material_csv)
wlogs["materials"] = table
#log log_output as pandas table
from wandb import Html
log_text = "".join(log_output).replace("\r", "\n")
def clean_log_strict(text: str) -> str:
# Keep only printable characters + newline + tab
allowed = set(string.printable) | {"\n", "\t"}
return "".join(ch for ch in text if ch in allowed)
log_text_cleaned = clean_log_strict(log_text)
wlogs["log"] = Html(f"<pre>{log_text_cleaned}</pre>")
wandb.log(wlogs)
except Exception as e:
#we don't want wandb errors logged in sentry
print(e)
finally:
if run is not None:
run.finish()
yield (
"".join(log_output), # progress_output
out_png, # final_image_preview (same as before)
gr.update( # download_results
value=files_to_offer,
visible=True,
interactive=True,
),
)
run_inputs = [filament_df_state, input_image_component] + [
accordion_params_dict[name] for name in accordion_params_ordered_names
]
run_outputs = [
progress_output,
final_image_preview,
download_results, # ### ZIP PATCH: only three outputs now
]
run_button.click(execute_autoforge_script, inputs=run_inputs, outputs=run_outputs)
css = """ #run_button_full_width { width: 100%; } """
if __name__ == "__main__":
if not os.path.exists(DEFAULT_MATERIALS_CSV):
print(f"Creating default filament file: {DEFAULT_MATERIALS_CSV}")
try:
initial_df.to_csv(DEFAULT_MATERIALS_CSV, index=False)
except Exception as e:
print(f"Could not write default {DEFAULT_MATERIALS_CSV}: {e}")
print("To run the UI, execute: python app.py") # Corrected to python app.py
demo.queue(default_concurrency_limit=1).launch(share=False)
|