Spaces:
Running
on
Zero
Running
on
Zero
Commit
·
91a801a
1
Parent(s):
fe75e01
Autoforge wrapper app
Browse files# Conflicts:
# README.md
- README.md +36 -1
- app.py +783 -0
- default_materials.csv +4 -0
- requirements.txt +2 -0
README.md
CHANGED
@@ -11,4 +11,39 @@ license: other
|
|
11 |
short_description: Generating 3D printed layered models from an input image
|
12 |
---
|
13 |
|
14 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
11 |
short_description: Generating 3D printed layered models from an input image
|
12 |
---
|
13 |
|
14 |
+
# AutoForge
|
15 |
+
|
16 |
+
AutoForge is a Python tool for generating 3D printed layered models from an input image. Using a learned optimization strategy with a Gumbel softmax formulation, AutoForge assigns materials per layer and produces both a discretized composite image and a 3D-printable STL file. It also generates swap instructions to guide the printer through material changes during a multi-material print. \
|
17 |
+
|
18 |
+
**TLDR:** It uses a picture to generate a 3D layer image that you can print with a 3d printer. Similar to [Hueforge](https://shop.thehueforge.com/), but without the manual work (and without the artistic control).
|
19 |
+
|
20 |
+
## Example
|
21 |
+
All examples use only the 13 BambuLab Basic filaments, currently available in Hueforge, the background color is set to black.
|
22 |
+
The pruning is set to a maximum of 8 color and 20 swaps, so each image uses at most 8 different colors and swaps the filament at most 20 times.
|
23 |
+
<div style="display: flex; justify-content: center; gap: 20px;">
|
24 |
+
<div style="text-align: center;">
|
25 |
+
<h3>Input Image</h3>
|
26 |
+
<img src="https://github.com/hvoss-techfak/AutoForge/blob/main/images/lofi.jpg" width="200" />
|
27 |
+
<img src="https://github.com/hvoss-techfak/AutoForge/blob/main/images/nature.jpg" width="200" />
|
28 |
+
<img src="https://github.com/hvoss-techfak/AutoForge/blob/main/images/cat.jpg" width="200" />
|
29 |
+
<img src="https://github.com/hvoss-techfak/AutoForge/blob/main/images/chameleon.jpg" width="200" />
|
30 |
+
</div>
|
31 |
+
<div style="text-align: center;">
|
32 |
+
<h3>Autoforge Output</h3>
|
33 |
+
<img src="https://github.com/hvoss-techfak/AutoForge/blob/main/images/lofi_discretized.png" width="200" />
|
34 |
+
<img src="https://github.com/hvoss-techfak/AutoForge/blob/main/images/nature_discretized.png" width="200" />
|
35 |
+
<img src="https://github.com/hvoss-techfak/AutoForge/blob/main/images/cat_discretized.png" width="200" />
|
36 |
+
<img src="https://github.com/hvoss-techfak/AutoForge/blob/main/images/chameleon_discretized.png" width="200" />
|
37 |
+
</div>
|
38 |
+
</div>
|
39 |
+
|
40 |
+
## Features
|
41 |
+
|
42 |
+
- **Image-to-Model Conversion**: Converts an input image into a layered model suitable for 3D printing.
|
43 |
+
- **Learned Optimization**: Optimizes per-pixel height and per-layer material assignments using PyTorch.
|
44 |
+
- **Learned Heightmap**: Optimizes the height of the layered model to create more detailed prints.
|
45 |
+
- **Gumbel Softmax Sampling**: Leverages the Gumbel softmax method to decide material assignments for each layer.
|
46 |
+
- **STL File Generation**: Exports an ASCII STL file based on the optimized height map.
|
47 |
+
- **Swap Instructions**: Generates clear swap instructions for changing materials during printing.
|
48 |
+
- **Live Visualization**: (Optional) Displays live composite images during the optimization process.
|
49 |
+
- **Hueforge export**: Outputs a project file that can be opened with hueforge.
|
app.py
ADDED
@@ -0,0 +1,783 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import pandas as pd
|
3 |
+
import os
|
4 |
+
import subprocess
|
5 |
+
import time
|
6 |
+
import shutil
|
7 |
+
import sys
|
8 |
+
from datetime import datetime
|
9 |
+
import re
|
10 |
+
from PIL import Image
|
11 |
+
|
12 |
+
# --- Configuration ---
|
13 |
+
#AUTFORGE_SCRIPT_PATH = "auto_forge.py" # Make sure this points to your script
|
14 |
+
DEFAULT_MATERIALS_CSV = "default_materials.csv"
|
15 |
+
GRADIO_OUTPUT_BASE_DIR = "output"
|
16 |
+
os.makedirs(GRADIO_OUTPUT_BASE_DIR, exist_ok=True)
|
17 |
+
|
18 |
+
REQUIRED_SCRIPT_COLS = ["Brand", " Name", " TD", " Color"]
|
19 |
+
DISPLAY_COL_MAP = {
|
20 |
+
"Brand": "Brand",
|
21 |
+
" Name": "Name",
|
22 |
+
" TD": "TD",
|
23 |
+
" Color": "Color (Hex)",
|
24 |
+
}
|
25 |
+
|
26 |
+
|
27 |
+
def ensure_required_cols(df, *, in_display_space):
|
28 |
+
"""
|
29 |
+
Return a copy of *df* with every required column present.
|
30 |
+
If *in_display_space* is True we use the display names
|
31 |
+
(Brand, Name, TD, Color (Hex)); otherwise we use the script names.
|
32 |
+
"""
|
33 |
+
target_cols = (
|
34 |
+
DISPLAY_COL_MAP if in_display_space else {k: k for k in REQUIRED_SCRIPT_COLS}
|
35 |
+
)
|
36 |
+
df_fixed = df.copy()
|
37 |
+
for col_script, col_display in target_cols.items():
|
38 |
+
if col_display not in df_fixed.columns:
|
39 |
+
# sensible defaults
|
40 |
+
if "TD" in col_display:
|
41 |
+
default = 0.0
|
42 |
+
elif "Color" in col_display:
|
43 |
+
default = "#000000"
|
44 |
+
elif "Owned" in col_display: # NEW
|
45 |
+
default = "false"
|
46 |
+
else:
|
47 |
+
default = ""
|
48 |
+
df_fixed[col_display] = default
|
49 |
+
# order columns nicely
|
50 |
+
return df_fixed[list(target_cols.values())]
|
51 |
+
|
52 |
+
|
53 |
+
def rgba_to_hex(col: str) -> str:
|
54 |
+
"""
|
55 |
+
Turn 'rgba(r, g, b, a)' or 'rgb(r, g, b)' into '#RRGGBB'.
|
56 |
+
If the input is already a hex code or anything unexpected,
|
57 |
+
return it unchanged.
|
58 |
+
"""
|
59 |
+
if not isinstance(col, str):
|
60 |
+
return col
|
61 |
+
col = col.strip()
|
62 |
+
if col.startswith("#"): # already fine
|
63 |
+
return col.upper()
|
64 |
+
|
65 |
+
m = re.match(
|
66 |
+
r"rgba?\(\s*([\d.]+)\s*,\s*([\d.]+)\s*,\s*([\d.]+)(?:\s*,\s*[\d.]+)?\s*\)",
|
67 |
+
col,
|
68 |
+
)
|
69 |
+
if not m:
|
70 |
+
return col # not something we recognise
|
71 |
+
|
72 |
+
r, g, b = (int(float(x)) for x in m.groups()[:3])
|
73 |
+
return "#{:02X}{:02X}{:02X}".format(r, g, b)
|
74 |
+
|
75 |
+
|
76 |
+
# --- Helper Functions ---
|
77 |
+
def get_script_args_info(exclude_args=None):
|
78 |
+
if exclude_args is None:
|
79 |
+
exclude_args = []
|
80 |
+
|
81 |
+
all_args_info = [
|
82 |
+
# input_image is handled separately in the UI
|
83 |
+
{
|
84 |
+
"name": "--iterations",
|
85 |
+
"type": "number",
|
86 |
+
"default": 2000,
|
87 |
+
"help": "Number of optimization iterations",
|
88 |
+
},
|
89 |
+
{
|
90 |
+
"name": "--layer_height",
|
91 |
+
"type": "number",
|
92 |
+
"default": 0.04,
|
93 |
+
"step": 0.01,
|
94 |
+
"help": "Layer thickness in mm",
|
95 |
+
},
|
96 |
+
{
|
97 |
+
"name": "--max_layers",
|
98 |
+
"type": "number",
|
99 |
+
"default": 75,
|
100 |
+
"precision": 0,
|
101 |
+
"help": "Maximum number of layers",
|
102 |
+
},
|
103 |
+
{
|
104 |
+
"name": "--learning_rate",
|
105 |
+
"type": "number",
|
106 |
+
"default": 0.015,
|
107 |
+
"step": 0.001,
|
108 |
+
"help": "Learning rate for optimization",
|
109 |
+
},
|
110 |
+
{
|
111 |
+
"name": "--background_height",
|
112 |
+
"type": "number",
|
113 |
+
"default": 0.4,
|
114 |
+
"step": 0.01,
|
115 |
+
"help": "Height of the background in mm",
|
116 |
+
},
|
117 |
+
{
|
118 |
+
"name": "--background_color",
|
119 |
+
"type": "colorpicker",
|
120 |
+
"default": "#000000",
|
121 |
+
"help": "Background color",
|
122 |
+
},
|
123 |
+
{
|
124 |
+
"name": "--stl_output_size",
|
125 |
+
"type": "number",
|
126 |
+
"default": 100,
|
127 |
+
"precision": 0,
|
128 |
+
"help": "Size of the longest dimension of the output STL file in mm",
|
129 |
+
},
|
130 |
+
{
|
131 |
+
"name": "--nozzle_diameter",
|
132 |
+
"type": "number",
|
133 |
+
"default": 0.4,
|
134 |
+
"step": 0.1,
|
135 |
+
"help": "Diameter of the printer nozzle in mm",
|
136 |
+
},
|
137 |
+
{
|
138 |
+
"name": "--pruning_max_colors",
|
139 |
+
"type": "number",
|
140 |
+
"default": 10,
|
141 |
+
"precision": 0,
|
142 |
+
"help": "Max number of colors allowed after pruning",
|
143 |
+
},
|
144 |
+
{
|
145 |
+
"name": "--pruning_max_swaps",
|
146 |
+
"type": "number",
|
147 |
+
"default": 20,
|
148 |
+
"precision": 0,
|
149 |
+
"help": "Max number of swaps allowed after pruning",
|
150 |
+
},
|
151 |
+
{
|
152 |
+
"name": "--pruning_max_layer",
|
153 |
+
"type": "number",
|
154 |
+
"default": 75,
|
155 |
+
"precision": 0,
|
156 |
+
"help": "Max number of layers allowed after pruning",
|
157 |
+
},
|
158 |
+
{
|
159 |
+
"name": "--warmup_fraction",
|
160 |
+
"type": "slider",
|
161 |
+
"default": 1.0,
|
162 |
+
"min": 0.0,
|
163 |
+
"max": 1.0,
|
164 |
+
"step": 0.01,
|
165 |
+
"help": "Fraction of iterations for keeping the tau at the initial value",
|
166 |
+
},
|
167 |
+
{
|
168 |
+
"name": "--learning_rate_warmup_fraction",
|
169 |
+
"type": "slider",
|
170 |
+
"default": 0.25,
|
171 |
+
"min": 0.0,
|
172 |
+
"max": 1.0,
|
173 |
+
"step": 0.01,
|
174 |
+
"help": "Fraction of iterations that the learning rate is increasing (warmup)",
|
175 |
+
},
|
176 |
+
# {
|
177 |
+
# "name": "--init_tau",
|
178 |
+
# "type": "number",
|
179 |
+
# "default": 1.0,
|
180 |
+
# "help": "Initial tau value for Gumbel-Softmax",
|
181 |
+
# },
|
182 |
+
# {
|
183 |
+
# "name": "--final_tau",
|
184 |
+
# "type": "number",
|
185 |
+
# "default": 0.01,
|
186 |
+
# "help": "Final tau value for Gumbel-Softmax",
|
187 |
+
# },
|
188 |
+
# {
|
189 |
+
# "name": "--min_layers",
|
190 |
+
# "type": "number",
|
191 |
+
# "default": 0,
|
192 |
+
# "precision": 0,
|
193 |
+
# "help": "Minimum number of layers. Used for pruning.",
|
194 |
+
# },
|
195 |
+
{
|
196 |
+
"name": "--early_stopping",
|
197 |
+
"type": "number",
|
198 |
+
"default": 1500,
|
199 |
+
"precision": 0,
|
200 |
+
"help": "Number of steps without improvement before stopping",
|
201 |
+
},
|
202 |
+
{
|
203 |
+
"name": "--random_seed",
|
204 |
+
"type": "number",
|
205 |
+
"default": 0,
|
206 |
+
"precision": 0,
|
207 |
+
"help": "Specify the random seed, or use 0 for automatic generation",
|
208 |
+
},
|
209 |
+
{
|
210 |
+
"name": "--num_init_rounds",
|
211 |
+
"type": "number",
|
212 |
+
"default": 32,
|
213 |
+
"precision": 0,
|
214 |
+
"help": "Number of rounds to choose the starting height map from.",
|
215 |
+
},
|
216 |
+
]
|
217 |
+
return [arg for arg in all_args_info if arg["name"] not in exclude_args]
|
218 |
+
|
219 |
+
|
220 |
+
# Initial filament data
|
221 |
+
initial_filament_data = {
|
222 |
+
"Brand": ["Generic", "Generic", "Generic"],
|
223 |
+
" Name": ["PLA Black", "PLA Grey", "PLA White"],
|
224 |
+
" TD": [1.0, 1.0, 1.0],
|
225 |
+
" Color": ["#000000", "#808080", "#FFFFFF"],
|
226 |
+
" Owned": ["true", "true", "true"], # ← add
|
227 |
+
}
|
228 |
+
initial_df = pd.DataFrame(initial_filament_data)
|
229 |
+
|
230 |
+
if os.path.exists(DEFAULT_MATERIALS_CSV):
|
231 |
+
try:
|
232 |
+
initial_df = pd.read_csv(DEFAULT_MATERIALS_CSV)
|
233 |
+
for col in ["Brand", " Name", " TD", " Color"]:
|
234 |
+
if col not in initial_df.columns:
|
235 |
+
initial_df[col] = None
|
236 |
+
initial_df = initial_df[["Brand", " Name", " TD", " Color"]].astype(
|
237 |
+
{" TD": float, " Color": str}
|
238 |
+
)
|
239 |
+
except Exception as e:
|
240 |
+
print(f"Warning: Could not load {DEFAULT_MATERIALS_CSV}: {e}. Using default.")
|
241 |
+
initial_df = pd.DataFrame(initial_filament_data)
|
242 |
+
else:
|
243 |
+
initial_df.to_csv(DEFAULT_MATERIALS_CSV, index=False)
|
244 |
+
|
245 |
+
|
246 |
+
# Helper for creating an empty 10-tuple for error returns
|
247 |
+
def create_empty_error_outputs(log_message=""):
|
248 |
+
return (
|
249 |
+
log_message, # progress_output
|
250 |
+
None, # final_image_preview
|
251 |
+
gr.update(visible=False, interactive=False), # ### ZIP: download_zip
|
252 |
+
)
|
253 |
+
|
254 |
+
|
255 |
+
# --- Gradio UI Definition ---
|
256 |
+
with gr.Blocks(theme=gr.themes.Soft()) as demo:
|
257 |
+
gr.Markdown("# Autoforge Web UI")
|
258 |
+
|
259 |
+
filament_df_state = gr.State(initial_df.copy())
|
260 |
+
current_run_output_dir = gr.State(None)
|
261 |
+
|
262 |
+
with gr.Tabs():
|
263 |
+
with gr.TabItem("Filament Management"):
|
264 |
+
gr.Markdown(
|
265 |
+
'Manage your filament list. This list will be saved as a CSV and used by the Autoforge process. \n To remove a filament simply rightclick on any of the fields and select "Delete Row"'
|
266 |
+
)
|
267 |
+
with gr.Row():
|
268 |
+
load_csv_button = gr.UploadButton(
|
269 |
+
"Load Filaments CSV", file_types=[".csv"]
|
270 |
+
)
|
271 |
+
save_csv_button = gr.Button("Save Current Filaments to CSV")
|
272 |
+
filament_table = gr.DataFrame(
|
273 |
+
value=ensure_required_cols(
|
274 |
+
initial_df.copy().rename(
|
275 |
+
columns={" Name": "Name", " TD": "TD", " Color": "Color (Hex)"}
|
276 |
+
),
|
277 |
+
in_display_space=True,
|
278 |
+
),
|
279 |
+
headers=["Brand", "Name", "TD", "Color (Hex)"],
|
280 |
+
datatype=["str", "str", "number", "str"],
|
281 |
+
interactive=True,
|
282 |
+
label="Filaments",
|
283 |
+
)
|
284 |
+
gr.Markdown("### Add New Filament")
|
285 |
+
with gr.Row():
|
286 |
+
new_brand = gr.Textbox(label="Brand")
|
287 |
+
new_name = gr.Textbox(label="Name")
|
288 |
+
with gr.Row():
|
289 |
+
new_td = gr.Number(
|
290 |
+
label="TD (Transmission/Opacity)",
|
291 |
+
value=1.0,
|
292 |
+
minimum=0,
|
293 |
+
maximum=100,
|
294 |
+
step=0.1,
|
295 |
+
)
|
296 |
+
new_color_hex = gr.ColorPicker(label="Color", value="#FF0000")
|
297 |
+
add_filament_button = gr.Button("Add Filament to Table")
|
298 |
+
download_csv_trigger = gr.File(
|
299 |
+
label="Download Filament CSV", visible=False, interactive=False
|
300 |
+
)
|
301 |
+
|
302 |
+
def update_filament_df_state_from_table(display_df):
|
303 |
+
display_df = ensure_required_cols(display_df, in_display_space=True)
|
304 |
+
|
305 |
+
# make sure every colour is hex
|
306 |
+
if "Color (Hex)" in display_df.columns:
|
307 |
+
display_df["Color (Hex)"] = display_df["Color (Hex)"].apply(
|
308 |
+
rgba_to_hex
|
309 |
+
)
|
310 |
+
|
311 |
+
script_df = display_df.rename(
|
312 |
+
columns={"Name": " Name", "TD": " TD", "Color (Hex)": " Color"}
|
313 |
+
)
|
314 |
+
script_df = ensure_required_cols(script_df, in_display_space=False)
|
315 |
+
filament_df_state.value = script_df
|
316 |
+
|
317 |
+
def add_filament_to_table(current_display_df, brand, name, td, color_hex):
|
318 |
+
if not brand or not name:
|
319 |
+
gr.Warning("Brand and Name cannot be empty.")
|
320 |
+
return current_display_df
|
321 |
+
|
322 |
+
color_hex = rgba_to_hex(color_hex) # <-- new line
|
323 |
+
|
324 |
+
new_row = pd.DataFrame(
|
325 |
+
[{"Brand": brand, "Name": name, "TD": td, "Color (Hex)": color_hex}]
|
326 |
+
)
|
327 |
+
updated_display_df = pd.concat(
|
328 |
+
[current_display_df, new_row], ignore_index=True
|
329 |
+
)
|
330 |
+
update_filament_df_state_from_table(updated_display_df)
|
331 |
+
return updated_display_df
|
332 |
+
|
333 |
+
def load_filaments_from_csv_upload(file_obj):
|
334 |
+
if file_obj is None:
|
335 |
+
current_script_df = filament_df_state.value
|
336 |
+
if current_script_df is not None and not current_script_df.empty:
|
337 |
+
return current_script_df.rename(
|
338 |
+
columns={
|
339 |
+
" Name": "Name",
|
340 |
+
" TD": "TD",
|
341 |
+
" Color": "Color (Hex)",
|
342 |
+
}
|
343 |
+
)
|
344 |
+
return initial_df.copy().rename(
|
345 |
+
columns={" Name": "Name", " TD": "TD", " Color": "Color (Hex)"}
|
346 |
+
)
|
347 |
+
try:
|
348 |
+
loaded_script_df = pd.read_csv(file_obj.name)
|
349 |
+
loaded_script_df = ensure_required_cols(
|
350 |
+
loaded_script_df, in_display_space=False
|
351 |
+
)
|
352 |
+
expected_cols = ["Brand", " Name", " TD", " Color"]
|
353 |
+
if not all(
|
354 |
+
col in loaded_script_df.columns for col in expected_cols
|
355 |
+
):
|
356 |
+
gr.Error(
|
357 |
+
f"CSV must contain columns: {', '.join(expected_cols)}. Found: {loaded_script_df.columns.tolist()}"
|
358 |
+
)
|
359 |
+
current_script_df = filament_df_state.value
|
360 |
+
if (
|
361 |
+
current_script_df is not None
|
362 |
+
and not current_script_df.empty
|
363 |
+
):
|
364 |
+
return current_script_df.rename(
|
365 |
+
columns={
|
366 |
+
" Name": "Name",
|
367 |
+
" TD": "TD",
|
368 |
+
" Color": "Color (Hex)",
|
369 |
+
}
|
370 |
+
)
|
371 |
+
return initial_df.copy().rename(
|
372 |
+
columns={
|
373 |
+
" Name": "Name",
|
374 |
+
" TD": "TD",
|
375 |
+
" Color": "Color (Hex)",
|
376 |
+
}
|
377 |
+
)
|
378 |
+
filament_df_state.value = loaded_script_df.copy()
|
379 |
+
return loaded_script_df.rename(
|
380 |
+
columns={" Name": "Name", " TD": "TD", " Color": "Color (Hex)"}
|
381 |
+
)
|
382 |
+
except Exception as e:
|
383 |
+
gr.Error(f"Error loading CSV: {e}")
|
384 |
+
current_script_df = filament_df_state.value
|
385 |
+
if current_script_df is not None and not current_script_df.empty:
|
386 |
+
return current_script_df.rename(
|
387 |
+
columns={
|
388 |
+
" Name": "Name",
|
389 |
+
" TD": "TD",
|
390 |
+
" Color": "Color (Hex)",
|
391 |
+
}
|
392 |
+
)
|
393 |
+
return initial_df.copy().rename(
|
394 |
+
columns={" Name": "Name", " TD": "TD", " Color": "Color (Hex)"}
|
395 |
+
)
|
396 |
+
|
397 |
+
def save_filaments_to_file_for_download(current_script_df_from_state):
|
398 |
+
if (
|
399 |
+
current_script_df_from_state is None
|
400 |
+
or current_script_df_from_state.empty
|
401 |
+
):
|
402 |
+
gr.Warning("Filament table is empty. Nothing to save.")
|
403 |
+
return None
|
404 |
+
df_to_save = current_script_df_from_state.copy()
|
405 |
+
required_cols = ["Brand", " Name", " TD", " Color"]
|
406 |
+
if not all(col in df_to_save.columns for col in required_cols):
|
407 |
+
gr.Error(
|
408 |
+
f"Cannot save. DataFrame missing required script columns. Expected: {required_cols}. Found: {df_to_save.columns.tolist()}"
|
409 |
+
)
|
410 |
+
return None
|
411 |
+
temp_dir = os.path.join(GRADIO_OUTPUT_BASE_DIR, "_temp_downloads")
|
412 |
+
os.makedirs(temp_dir, exist_ok=True)
|
413 |
+
temp_filament_csv_path = os.path.join(
|
414 |
+
temp_dir,
|
415 |
+
f"filaments_{datetime.now().strftime('%Y%m%d_%H%M%S')}.csv",
|
416 |
+
)
|
417 |
+
try:
|
418 |
+
df_to_save.to_csv(temp_filament_csv_path, index=False)
|
419 |
+
gr.Info("Filaments prepared for download.")
|
420 |
+
return gr.File(
|
421 |
+
value=temp_filament_csv_path,
|
422 |
+
label="Download Filament CSV",
|
423 |
+
interactive=True,
|
424 |
+
visible=True,
|
425 |
+
)
|
426 |
+
except Exception as e:
|
427 |
+
gr.Error(f"Error saving CSV for download: {e}")
|
428 |
+
return None
|
429 |
+
|
430 |
+
filament_table.change(
|
431 |
+
update_filament_df_state_from_table,
|
432 |
+
inputs=[filament_table],
|
433 |
+
outputs=None,
|
434 |
+
queue=False,
|
435 |
+
)
|
436 |
+
add_filament_button.click(
|
437 |
+
add_filament_to_table,
|
438 |
+
inputs=[filament_table, new_brand, new_name, new_td, new_color_hex],
|
439 |
+
outputs=[filament_table],
|
440 |
+
)
|
441 |
+
load_csv_button.upload(
|
442 |
+
load_filaments_from_csv_upload,
|
443 |
+
inputs=[load_csv_button],
|
444 |
+
outputs=[filament_table],
|
445 |
+
)
|
446 |
+
save_csv_button.click(
|
447 |
+
save_filaments_to_file_for_download,
|
448 |
+
inputs=[filament_df_state],
|
449 |
+
outputs=[download_csv_trigger],
|
450 |
+
)
|
451 |
+
|
452 |
+
with gr.TabItem("Run Autoforge"):
|
453 |
+
accordion_params_dict = {}
|
454 |
+
accordion_params_ordered_names = []
|
455 |
+
|
456 |
+
with gr.Row():
|
457 |
+
with gr.Column(scale=1):
|
458 |
+
gr.Markdown("### Input Image (Required)")
|
459 |
+
input_image_component = gr.Image(
|
460 |
+
type="filepath",
|
461 |
+
image_mode="RGBA",
|
462 |
+
label="Upload Image",
|
463 |
+
sources=["upload"],
|
464 |
+
interactive=True,
|
465 |
+
)
|
466 |
+
with gr.Column(scale=2):
|
467 |
+
gr.Markdown("### Autoforge Parameters")
|
468 |
+
with gr.Accordion("Progress & Output", open=True):
|
469 |
+
final_image_preview = gr.Image(
|
470 |
+
label="Final Model Preview",
|
471 |
+
type="filepath",
|
472 |
+
interactive=False,
|
473 |
+
)
|
474 |
+
with gr.Row():
|
475 |
+
download_zip = gr.File( # was visible=True
|
476 |
+
label="Download all results (.zip)",
|
477 |
+
interactive=True,
|
478 |
+
visible=False,
|
479 |
+
)
|
480 |
+
with gr.Row():
|
481 |
+
with gr.Accordion("Adjust Parameters", open=False):
|
482 |
+
args_for_accordion = get_script_args_info(
|
483 |
+
exclude_args=["--input_image"]
|
484 |
+
)
|
485 |
+
|
486 |
+
for arg in args_for_accordion:
|
487 |
+
label, info, default_val = (
|
488 |
+
f"{arg['name']}",
|
489 |
+
arg["help"],
|
490 |
+
arg.get("default"),
|
491 |
+
)
|
492 |
+
if arg["type"] == "number":
|
493 |
+
accordion_params_dict[arg["name"]] = gr.Number(
|
494 |
+
label=label,
|
495 |
+
value=default_val,
|
496 |
+
info=info,
|
497 |
+
minimum=arg.get("min"),
|
498 |
+
maximum=arg.get("max"),
|
499 |
+
step=arg.get(
|
500 |
+
"step",
|
501 |
+
0.001 if isinstance(default_val, float) else 1,
|
502 |
+
),
|
503 |
+
precision=arg.get("precision", None),
|
504 |
+
)
|
505 |
+
elif arg["type"] == "slider":
|
506 |
+
accordion_params_dict[arg["name"]] = gr.Slider(
|
507 |
+
label=label,
|
508 |
+
value=default_val,
|
509 |
+
info=info,
|
510 |
+
minimum=arg.get("min", 0),
|
511 |
+
maximum=arg.get("max", 1),
|
512 |
+
step=arg.get("step", 0.01),
|
513 |
+
)
|
514 |
+
elif arg["type"] == "checkbox":
|
515 |
+
accordion_params_dict[arg["name"]] = gr.Checkbox(
|
516 |
+
label=label, value=default_val, info=info
|
517 |
+
)
|
518 |
+
elif arg["type"] == "colorpicker":
|
519 |
+
accordion_params_dict[arg["name"]] = gr.ColorPicker(
|
520 |
+
label=label, value=default_val, info=info
|
521 |
+
)
|
522 |
+
else:
|
523 |
+
accordion_params_dict[arg["name"]] = gr.Textbox(
|
524 |
+
label=label, value=str(default_val), info=info
|
525 |
+
)
|
526 |
+
accordion_params_ordered_names.append(arg["name"])
|
527 |
+
|
528 |
+
run_button = gr.Button(
|
529 |
+
"Run Autoforge Process",
|
530 |
+
variant="primary",
|
531 |
+
elem_id="run_button_full_width",
|
532 |
+
)
|
533 |
+
|
534 |
+
|
535 |
+
progress_output = gr.Textbox(
|
536 |
+
label="Console Output",
|
537 |
+
lines=15,
|
538 |
+
autoscroll=True,
|
539 |
+
show_copy_button=False,
|
540 |
+
)
|
541 |
+
|
542 |
+
# --- Backend Function for Running the Script ---
|
543 |
+
def execute_autoforge_script(
|
544 |
+
current_filaments_df_state_val, input_image_path, *accordion_param_values
|
545 |
+
):
|
546 |
+
# 0. Validate Inputs
|
547 |
+
if (
|
548 |
+
not input_image_path
|
549 |
+
): # Covers None and empty string from gr.Image(type="filepath")
|
550 |
+
gr.Error("Input Image is required! Please upload an image.")
|
551 |
+
return create_empty_error_outputs("Error: Input Image is required!")
|
552 |
+
|
553 |
+
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
|
554 |
+
run_output_dir_val = os.path.join(GRADIO_OUTPUT_BASE_DIR, f"run_{timestamp}")
|
555 |
+
os.makedirs(run_output_dir_val, exist_ok=True)
|
556 |
+
current_run_output_dir.value = run_output_dir_val
|
557 |
+
|
558 |
+
# 1. Save current filaments
|
559 |
+
if (
|
560 |
+
current_filaments_df_state_val is None
|
561 |
+
or current_filaments_df_state_val.empty
|
562 |
+
):
|
563 |
+
gr.Error("Filament table is empty. Please add filaments.")
|
564 |
+
return create_empty_error_outputs("Error: Filament table is empty.")
|
565 |
+
|
566 |
+
temp_filament_csv = os.path.join(run_output_dir_val, "materials.csv")
|
567 |
+
df_to_save = current_filaments_df_state_val.copy()
|
568 |
+
required_cols = ["Brand", " Name", " TD", " Color"]
|
569 |
+
missing_cols = [col for col in required_cols if col not in df_to_save.columns]
|
570 |
+
if missing_cols:
|
571 |
+
err_msg = (
|
572 |
+
f"Error: Filament data is missing columns: {', '.join(missing_cols)}."
|
573 |
+
)
|
574 |
+
gr.Error(err_msg)
|
575 |
+
return create_empty_error_outputs(err_msg)
|
576 |
+
try:
|
577 |
+
df_to_save.to_csv(temp_filament_csv, index=False)
|
578 |
+
except Exception as e:
|
579 |
+
err_msg = f"Error saving temporary filament CSV: {e}"
|
580 |
+
gr.Error(err_msg)
|
581 |
+
return create_empty_error_outputs(err_msg)
|
582 |
+
|
583 |
+
# 2. Construct command
|
584 |
+
python_executable = sys.executable or "python"
|
585 |
+
command = ["autoforge",]
|
586 |
+
command.extend(["--csv_file", temp_filament_csv])
|
587 |
+
command.extend(["--output_folder", run_output_dir_val])
|
588 |
+
command.extend(["--disable_visualization_for_gradio","1"])
|
589 |
+
|
590 |
+
base_filename = os.path.basename(input_image_path)
|
591 |
+
script_input_image_path = os.path.join(run_output_dir_val, base_filename)
|
592 |
+
try:
|
593 |
+
img = Image.open(input_image_path)
|
594 |
+
# decide where to store the image we pass to Autoforge
|
595 |
+
base_no_ext, _ = os.path.splitext(os.path.basename(input_image_path))
|
596 |
+
script_input_image_path = os.path.join(
|
597 |
+
run_output_dir_val, f"{base_no_ext}.png"
|
598 |
+
)
|
599 |
+
|
600 |
+
if img.mode in ("RGBA", "LA") or (
|
601 |
+
img.mode == "P" and "transparency" in img.info
|
602 |
+
):
|
603 |
+
# the uploaded file has an alpha channel – save it as PNG
|
604 |
+
img.save(script_input_image_path, format="PNG")
|
605 |
+
else:
|
606 |
+
# no alpha present – just copy the file in whatever format it was
|
607 |
+
script_input_image_path = os.path.join(
|
608 |
+
run_output_dir_val, os.path.basename(input_image_path)
|
609 |
+
)
|
610 |
+
shutil.copy(input_image_path, script_input_image_path)
|
611 |
+
|
612 |
+
command.extend(["--input_image", script_input_image_path])
|
613 |
+
except Exception as e:
|
614 |
+
err_msg = f"Error handling input image: {e}"
|
615 |
+
gr.Error(err_msg)
|
616 |
+
return create_empty_error_outputs(err_msg)
|
617 |
+
|
618 |
+
param_dict = dict(zip(accordion_params_ordered_names, accordion_param_values))
|
619 |
+
for arg_name, arg_widget_val in param_dict.items():
|
620 |
+
if arg_widget_val is None or arg_widget_val == "":
|
621 |
+
arg_info_list = [
|
622 |
+
item for item in get_script_args_info() if item["name"] == arg_name
|
623 |
+
] # get full list to check type
|
624 |
+
if (
|
625 |
+
arg_info_list
|
626 |
+
and arg_info_list[0]["type"] == "checkbox"
|
627 |
+
and arg_widget_val is False
|
628 |
+
):
|
629 |
+
continue
|
630 |
+
else:
|
631 |
+
continue
|
632 |
+
if isinstance(arg_widget_val, bool):
|
633 |
+
if arg_widget_val:
|
634 |
+
command.append(arg_name)
|
635 |
+
else:
|
636 |
+
command.extend([arg_name, str(arg_widget_val)])
|
637 |
+
|
638 |
+
# 3. Run script
|
639 |
+
log_output = (
|
640 |
+
f"Starting Autoforge process at "
|
641 |
+
f"{datetime.now().strftime('%Y-%m-%d %H:%M:%S')}\n"
|
642 |
+
f"Output directory: {run_output_dir_val}\n"
|
643 |
+
f"Command: {' '.join(command)}\n\n"
|
644 |
+
)
|
645 |
+
|
646 |
+
yield create_empty_error_outputs(log_output) # clear UI and show header
|
647 |
+
|
648 |
+
process = subprocess.Popen(
|
649 |
+
command,
|
650 |
+
stdout=subprocess.PIPE,
|
651 |
+
stderr=subprocess.PIPE,
|
652 |
+
text=True,
|
653 |
+
bufsize=1,
|
654 |
+
universal_newlines=True,
|
655 |
+
)
|
656 |
+
|
657 |
+
# ---- helper: read stdout in a background thread -------------------
|
658 |
+
from threading import Thread
|
659 |
+
from queue import Queue, Empty
|
660 |
+
|
661 |
+
def _enqueue(pipe, q):
|
662 |
+
"""Forward stdout/stderr to a queue, emitting on both '\n' and '\r'."""
|
663 |
+
buf = ""
|
664 |
+
while True:
|
665 |
+
ch = pipe.read(1) # read a single character
|
666 |
+
if ch == "": # EOF
|
667 |
+
if buf:
|
668 |
+
q.put(buf) # flush whatever is left
|
669 |
+
break
|
670 |
+
buf += ch
|
671 |
+
if ch in ("\n", "\r"): # tqdm uses '\r'
|
672 |
+
q.put(buf)
|
673 |
+
buf = ""
|
674 |
+
pipe.close()
|
675 |
+
|
676 |
+
q_out = Queue()
|
677 |
+
Thread(target=_enqueue, args=(process.stdout, q_out), daemon=True).start()
|
678 |
+
Thread(target=_enqueue, args=(process.stderr, q_out), daemon=True).start()
|
679 |
+
|
680 |
+
preview_mtime = 0
|
681 |
+
last_push = 0
|
682 |
+
|
683 |
+
def _maybe_new_preview():
|
684 |
+
"""
|
685 |
+
If vis_temp.png has a newer mtime than last time, copy it to a
|
686 |
+
stamped name (to defeat browser cache) and return that path.
|
687 |
+
Otherwise return gr.update() so the image stays as-is.
|
688 |
+
"""
|
689 |
+
from gradio import update # local import for clarity
|
690 |
+
|
691 |
+
nonlocal preview_mtime
|
692 |
+
|
693 |
+
src = os.path.join(run_output_dir_val, "vis_temp.png")
|
694 |
+
if not os.path.exists(src):
|
695 |
+
return update() # nothing new, keep old
|
696 |
+
|
697 |
+
mtime = os.path.getmtime(src)
|
698 |
+
if mtime <= preview_mtime: # unchanged
|
699 |
+
return update() # → no UI update
|
700 |
+
|
701 |
+
return src # → refresh image
|
702 |
+
|
703 |
+
# ---- main loop: poll every 0.5 s ----------------------------------
|
704 |
+
while process.poll() is None or not q_out.empty():
|
705 |
+
# drain whatever is waiting in stdout
|
706 |
+
try:
|
707 |
+
while True:
|
708 |
+
log_output += q_out.get_nowait()
|
709 |
+
except Empty:
|
710 |
+
pass
|
711 |
+
|
712 |
+
now = time.time()
|
713 |
+
if now - last_push >= 1.0: # 500 ms tick
|
714 |
+
current_preview = _maybe_new_preview()
|
715 |
+
yield (
|
716 |
+
log_output,
|
717 |
+
current_preview,
|
718 |
+
gr.update(), # ### ZIP PATCH: placeholder for zip widget
|
719 |
+
)
|
720 |
+
last_push = now
|
721 |
+
|
722 |
+
time.sleep(0.05) # keep CPU load low
|
723 |
+
|
724 |
+
return_code = process.wait()
|
725 |
+
log_output += (
|
726 |
+
"\nAutoforge process completed successfully!"
|
727 |
+
if return_code == 0
|
728 |
+
else f"\nAutoforge process failed with exit code {return_code}."
|
729 |
+
)
|
730 |
+
|
731 |
+
# make sure we show the final preview (if any)
|
732 |
+
final_preview = _maybe_new_preview() or os.path.join(
|
733 |
+
run_output_dir_val, "final_model.png"
|
734 |
+
)
|
735 |
+
|
736 |
+
zip_base = os.path.join(
|
737 |
+
run_output_dir_val, "autoforge_results"
|
738 |
+
) # ### ZIP PATCH
|
739 |
+
zip_path = shutil.make_archive(zip_base, "zip", run_output_dir_val)
|
740 |
+
|
741 |
+
# 4. Prepare output file paths
|
742 |
+
png_path = os.path.join(run_output_dir_val, "final_model.png")
|
743 |
+
stl_path = os.path.join(run_output_dir_val, "final_model.stl")
|
744 |
+
txt_path = os.path.join(run_output_dir_val, "swap_instructions.txt")
|
745 |
+
hfp_path = os.path.join(run_output_dir_val, "project_file.hfp")
|
746 |
+
|
747 |
+
out_png = png_path if os.path.exists(png_path) else None
|
748 |
+
out_stl = stl_path if os.path.exists(stl_path) else None
|
749 |
+
out_txt = txt_path if os.path.exists(txt_path) else None
|
750 |
+
out_hfp = hfp_path if os.path.exists(hfp_path) else None
|
751 |
+
|
752 |
+
if out_png is None:
|
753 |
+
log_output += "\nWarning: final_model.png not found in output."
|
754 |
+
|
755 |
+
yield (
|
756 |
+
log_output, # progress_output
|
757 |
+
out_png, # final_image_preview
|
758 |
+
gr.update(
|
759 |
+
value=zip_path, visible=True, interactive=True
|
760 |
+
), # ### ZIP PATCH: download_zip
|
761 |
+
)
|
762 |
+
|
763 |
+
run_inputs = [filament_df_state, input_image_component] + [
|
764 |
+
accordion_params_dict[name] for name in accordion_params_ordered_names
|
765 |
+
]
|
766 |
+
run_outputs = [
|
767 |
+
progress_output,
|
768 |
+
final_image_preview,
|
769 |
+
download_zip, # ### ZIP PATCH: only three outputs now
|
770 |
+
]
|
771 |
+
|
772 |
+
run_button.click(execute_autoforge_script, inputs=run_inputs, outputs=run_outputs)
|
773 |
+
|
774 |
+
css = """ #run_button_full_width { width: 100%; } """
|
775 |
+
if __name__ == "__main__":
|
776 |
+
if not os.path.exists(DEFAULT_MATERIALS_CSV):
|
777 |
+
print(f"Creating default filament file: {DEFAULT_MATERIALS_CSV}")
|
778 |
+
try:
|
779 |
+
initial_df.to_csv(DEFAULT_MATERIALS_CSV, index=False)
|
780 |
+
except Exception as e:
|
781 |
+
print(f"Could not write default {DEFAULT_MATERIALS_CSV}: {e}")
|
782 |
+
print("To run the UI, execute: python app.py") # Corrected to python app.py
|
783 |
+
demo.queue().launch(share=False)
|
default_materials.csv
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
Brand, Name, TD, Color, Owned
|
2 |
+
Generic,PLA Black,1.0,#000000,true
|
3 |
+
Generic,PLA Grey,1.0,#808080,true
|
4 |
+
Generic,PLA White,1.0,#FFFFFF,true
|
requirements.txt
ADDED
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
1 |
+
autoforge
|
2 |
+
gradio
|