Spaces:
Runtime error
Runtime error
import cv2 | |
import torch | |
import numpy as np | |
from transformers import DPTForDepthEstimation, DPTImageProcessor | |
import gradio as gr | |
import torch.nn.utils.prune as prune | |
import open3d as o3d | |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu") | |
model = DPTForDepthEstimation.from_pretrained("Intel/dpt-swinv2-tiny-256", torch_dtype=torch.float32) | |
model.eval() | |
# Apply global unstructured pruning | |
parameters_to_prune = [ | |
(module, "weight") for module in filter(lambda m: isinstance(m, (torch.nn.Conv2d, torch.nn.Linear)), model.modules()) | |
] | |
prune.global_unstructured( | |
parameters_to_prune, | |
pruning_method=prune.L1Unstructured, | |
amount=0.4, # Prune 40% of weights | |
) | |
for module, _ in parameters_to_prune: | |
prune.remove(module, "weight") | |
model = torch.quantization.quantize_dynamic( | |
model, {torch.nn.Linear, torch.nn.Conv2d}, dtype=torch.qint8 | |
) | |
model = model.to(device) | |
processor = DPTImageProcessor.from_pretrained("Intel/dpt-swinv2-tiny-256") | |
color_map = cv2.applyColorMap(np.arange(256, dtype=np.uint8), cv2.COLORMAP_INFERNO) | |
color_map = torch.from_numpy(color_map).to(device) | |
def preprocess_image(image): | |
image = cv2.resize(image, (128, 128)) | |
image = torch.from_numpy(image).permute(2, 0, 1).unsqueeze(0).float().to(device) | |
return image / 255.0 | |
def create_point_cloud(depth_map, color_image): | |
rows, cols = depth_map.shape | |
c, r = np.meshgrid(np.arange(cols), np.arange(rows), sparse=True) | |
valid = (depth_map > 0) & (depth_map < 1000) | |
z = np.where(valid, depth_map, 0) | |
x = np.where(valid, z * (c - cols / 2) / cols, 0) | |
y = np.where(valid, z * (r - rows / 2) / rows, 0) | |
points = np.dstack((x, y, z)).reshape(-1, 3) | |
colors = color_image.reshape(-1, 3) | |
pcd = o3d.geometry.PointCloud() | |
pcd.points = o3d.utility.Vector3dVector(points) | |
pcd.colors = o3d.utility.Vector3dVector(colors / 255.0) | |
return pcd | |
def process_frame(image): | |
if image is None: | |
return None | |
preprocessed = preprocess_image(image) | |
predicted_depth = model(preprocessed).predicted_depth | |
depth_map = predicted_depth.squeeze().cpu().numpy() | |
# Normalize depth map | |
depth_map = (depth_map - depth_map.min()) / (depth_map.max() - depth_map.min()) | |
# Create point cloud | |
pcd = create_point_cloud(depth_map, image) | |
# Visualize point cloud | |
vis = o3d.visualization.Visualizer() | |
vis.create_window() | |
vis.add_geometry(pcd) | |
vis.poll_events() | |
vis.update_renderer() | |
# Capture the visualization as an image | |
image = vis.capture_screen_float_buffer(False) | |
vis.destroy_window() | |
# Convert the image to numpy array | |
point_cloud_image = (np.asarray(image) * 255).astype(np.uint8) | |
return point_cloud_image | |
interface = gr.Interface( | |
fn=process_frame, | |
inputs=gr.Image(sources="webcam", streaming=True), | |
outputs="image", | |
live=True | |
) | |
interface.launch() |