import cv2 import torch import numpy as np from transformers import DPTForDepthEstimation, DPTImageProcessor import gradio as gr import torch.nn.utils.prune as prune import open3d as o3d device = torch.device("cuda" if torch.cuda.is_available() else "cpu") model = DPTForDepthEstimation.from_pretrained("Intel/dpt-swinv2-tiny-256", torch_dtype=torch.float32) model.eval() # Apply global unstructured pruning parameters_to_prune = [ (module, "weight") for module in filter(lambda m: isinstance(m, (torch.nn.Conv2d, torch.nn.Linear)), model.modules()) ] prune.global_unstructured( parameters_to_prune, pruning_method=prune.L1Unstructured, amount=0.4, # Prune 40% of weights ) for module, _ in parameters_to_prune: prune.remove(module, "weight") model = torch.quantization.quantize_dynamic( model, {torch.nn.Linear, torch.nn.Conv2d}, dtype=torch.qint8 ) model = model.to(device) processor = DPTImageProcessor.from_pretrained("Intel/dpt-swinv2-tiny-256") color_map = cv2.applyColorMap(np.arange(256, dtype=np.uint8), cv2.COLORMAP_INFERNO) color_map = torch.from_numpy(color_map).to(device) def preprocess_image(image): image = cv2.resize(image, (128, 128)) image = torch.from_numpy(image).permute(2, 0, 1).unsqueeze(0).float().to(device) return image / 255.0 def create_point_cloud(depth_map, color_image): rows, cols = depth_map.shape c, r = np.meshgrid(np.arange(cols), np.arange(rows), sparse=True) valid = (depth_map > 0) & (depth_map < 1000) z = np.where(valid, depth_map, 0) x = np.where(valid, z * (c - cols / 2) / cols, 0) y = np.where(valid, z * (r - rows / 2) / rows, 0) points = np.dstack((x, y, z)).reshape(-1, 3) colors = color_image.reshape(-1, 3) pcd = o3d.geometry.PointCloud() pcd.points = o3d.utility.Vector3dVector(points) pcd.colors = o3d.utility.Vector3dVector(colors / 255.0) return pcd @torch.inference_mode() def process_frame(image): if image is None: return None preprocessed = preprocess_image(image) predicted_depth = model(preprocessed).predicted_depth depth_map = predicted_depth.squeeze().cpu().numpy() # Normalize depth map depth_map = (depth_map - depth_map.min()) / (depth_map.max() - depth_map.min()) # Create point cloud pcd = create_point_cloud(depth_map, image) # Visualize point cloud vis = o3d.visualization.Visualizer() vis.create_window() vis.add_geometry(pcd) vis.poll_events() vis.update_renderer() # Capture the visualization as an image image = vis.capture_screen_float_buffer(False) vis.destroy_window() # Convert the image to numpy array point_cloud_image = (np.asarray(image) * 255).astype(np.uint8) return point_cloud_image interface = gr.Interface( fn=process_frame, inputs=gr.Image(sources="webcam", streaming=True), outputs="image", live=True ) interface.launch()