|
from fastapi import FastAPI, Request |
|
from transformers import AutoTokenizer, AutoModelForCausalLM |
|
from peft import PeftModel, PeftConfig |
|
import torch |
|
|
|
app = FastAPI() |
|
|
|
model_name = "microsoft/phi-2" |
|
peft_model_id = "howtomakepplragequit/phi2-lora-instruct" |
|
|
|
|
|
tokenizer = AutoTokenizer.from_pretrained(model_name) |
|
base_model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.float16) |
|
model = PeftModel.from_pretrained(base_model, peft_model_id) |
|
model.eval() |
|
|
|
@app.post("/generate") |
|
async def generate(request: Request): |
|
data = await request.json() |
|
prompt = data.get("prompt", "") |
|
inputs = tokenizer(prompt, return_tensors="pt").to(model.device) |
|
outputs = model.generate(**inputs, max_new_tokens=100) |
|
response = tokenizer.decode(outputs[0], skip_special_tokens=True) |
|
return {"response": response} |
|
|