Update main.py
Browse files
main.py
CHANGED
@@ -1,26 +1,24 @@
|
|
1 |
-
import
|
2 |
-
|
3 |
-
|
4 |
-
|
5 |
-
|
6 |
-
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
13 |
-
base_model = AutoModelForCausalLM.from_pretrained(model_name)
|
14 |
-
model = PeftModel.from_pretrained(base_model,
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
response = tokenizer.decode(output[0], skip_special_tokens=True)
|
26 |
-
return {"response": response}
|
|
|
1 |
+
from fastapi import FastAPI, Request
|
2 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM
|
3 |
+
from peft import PeftModel, PeftConfig
|
4 |
+
import torch
|
5 |
+
|
6 |
+
app = FastAPI()
|
7 |
+
|
8 |
+
model_name = "microsoft/phi-2"
|
9 |
+
peft_model_id = "howtomakepplragequit/phi2-lora-instruct"
|
10 |
+
|
11 |
+
# Load tokenizer and model with LoRA
|
12 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
13 |
+
base_model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.float16)
|
14 |
+
model = PeftModel.from_pretrained(base_model, peft_model_id)
|
15 |
+
model.eval()
|
16 |
+
|
17 |
+
@app.post("/generate")
|
18 |
+
async def generate(request: Request):
|
19 |
+
data = await request.json()
|
20 |
+
prompt = data.get("prompt", "")
|
21 |
+
inputs = tokenizer(prompt, return_tensors="pt").to(model.device)
|
22 |
+
outputs = model.generate(**inputs, max_new_tokens=100)
|
23 |
+
response = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
24 |
+
return {"response": response}
|
|
|
|