File size: 874 Bytes
0f9dc03
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
from fastapi import FastAPI, Request
from transformers import AutoTokenizer, AutoModelForCausalLM
from peft import PeftModel, PeftConfig
import torch

app = FastAPI()

model_name = "microsoft/phi-2"
peft_model_id = "howtomakepplragequit/phi2-lora-instruct"

# Load tokenizer and model with LoRA
tokenizer = AutoTokenizer.from_pretrained(model_name)
base_model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.float16)
model = PeftModel.from_pretrained(base_model, peft_model_id)
model.eval()

@app.post("/generate")
async def generate(request: Request):
    data = await request.json()
    prompt = data.get("prompt", "")
    inputs = tokenizer(prompt, return_tensors="pt").to(model.device)
    outputs = model.generate(**inputs, max_new_tokens=100)
    response = tokenizer.decode(outputs[0], skip_special_tokens=True)
    return {"response": response}