File size: 6,721 Bytes
a57b6ab
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
import copy
import gradio as gr
import os
import pickle
from matplotlib import pyplot as plt
import plotly.express as px
import plotly.graph_objects as go
import numpy as np



all_test_scenes = sorted(os.listdir('iso_output/NYU'))


def get_grid_coords(dims, resolution):
    """

    :param dims: the dimensions of the grid [x, y, z] (i.e. [256, 256, 32])

    :return coords_grid: is the center coords of voxels in the grid

    """

    g_xx = np.arange(0, dims[0] + 1)
    g_yy = np.arange(0, dims[1] + 1)

    g_zz = np.arange(0, dims[2] + 1)

    # Obtaining the grid with coords...
    xx, yy, zz = np.meshgrid(g_xx[:-1], g_yy[:-1], g_zz[:-1])
    coords_grid = np.array([xx.flatten(), yy.flatten(), zz.flatten()]).T
    # coords_grid = coords_grid.astype(np.float)

    coords_grid = (coords_grid * resolution) + resolution / 2

    temp = np.copy(coords_grid)
    temp[:, 0] = coords_grid[:, 1]
    temp[:, 1] = coords_grid[:, 0]
    coords_grid = np.copy(temp)

    return coords_grid
    

def draw(

    voxels,

    cam_pose,

    vox_origin,

    voxel_size=0.08,

    d=0.75,  # 0.75m - determine the size of the mesh representing the camera

):
    # Compute the coordinates of the mesh representing camera
    y = d * 480 / (2 * 518.8579)
    x = d * 640 / (2 * 518.8579)
    tri_points = np.array(
        [
            [0, 0, 0],
            [x, y, d],
            [-x, y, d],
            [-x, -y, d],
            [x, -y, d],
        ]
    )
    tri_points = np.hstack([tri_points, np.ones((5, 1))])

    tri_points = (cam_pose @ tri_points.T).T
    x = tri_points[:, 0] - vox_origin[0]
    y = tri_points[:, 1] - vox_origin[1]
    z = tri_points[:, 2] - vox_origin[2]
    triangles = [
        (0, 1, 2),
        (0, 1, 4),
        (0, 3, 4),
        (0, 2, 3),
    ]

    # Compute the voxels coordinates
    grid_coords = get_grid_coords(
        [voxels.shape[0], voxels.shape[2], voxels.shape[1]], voxel_size
    )

    # Attach the predicted class to every voxel
    grid_coords = np.vstack(
        (grid_coords.T, np.moveaxis(voxels, [0, 1, 2], [0, 2, 1]).reshape(-1))
    ).T

    # Remove empty and unknown voxels
    occupied_voxels = grid_coords[(grid_coords[:, 3] > 0) & (grid_coords[:, 3] < 255)]
    

    colors = np.array(
        [
            [22, 191, 206, 255],
            [214, 38, 40, 255],
            [43, 160, 43, 255],
            [158, 216, 229, 255],
            [114, 158, 206, 255],
            [204, 204, 91, 255],
            [255, 186, 119, 255],
            [147, 102, 188, 255],
            [30, 119, 181, 255],
            [188, 188, 33, 255],
            [255, 127, 12, 255],
            [196, 175, 214, 255],
            [153, 153, 153, 255],
            [255, 255, 255, 255],
        ]
    )
    
    pts_colors = [f'rgb({colors[int(i)][0]}, {colors[int(i)][1]}, {colors[int(i)][2]})' for i in occupied_voxels[:, 3]]
 
    
    
    fig = go.Figure(data=[go.Scatter3d(x=occupied_voxels[:, 0], y=occupied_voxels[:, 1], z=occupied_voxels[:, 2],mode='markers',
                    marker=dict(
                            size=5,
                            color=pts_colors,                # set color to an array/list of desired values
                            # colorscale='Viridis',   # choose a colorscale
                            opacity=1.0,
                            symbol='square'
                        ))])
    fig.update_layout(
    autosize=True,
    scene = dict(
        aspectmode='data',
        xaxis = dict(
            backgroundcolor="rgb(255, 255, 255)",
            gridcolor="black",
            showbackground=True,
            zerolinecolor="black",
            nticks=4, 
            visible=False,
            range=[-5,5],),
        yaxis = dict(
            backgroundcolor="rgb(255, 255, 255)",
            gridcolor="black",
            showbackground=True,
            zerolinecolor="black",
            visible=False,
            nticks=4, range=[-5,5],),
        zaxis = dict(
            backgroundcolor="rgb(255, 255, 255)",
            gridcolor="black",
            showbackground=True,
            zerolinecolor="black",
            visible=False,
            nticks=4, range=[-5,5],),
        bgcolor="black",
    ),
        
    )

    return fig


def predict(scan):
    if scan is None:
        return None, None, None
    scan = 'iso_output/NYU/' + scan
    with open(scan, "rb") as handle:
        b = pickle.load(handle)

    cam_pose = b["cam_pose"]
    vox_origin = b["vox_origin"]
    gt_scene = b["target"]
    pred_scene = b["y_pred"]
    scan = os.path.basename(scan)[:12]
    img = plt.imread('iso_input/'+scan+'_color.jpg')
    
    pred_scene[(gt_scene == 255)] = 255  # only draw scene inside the room

    fig = draw(
        pred_scene,
        cam_pose,
        vox_origin,
        voxel_size=0.08,
        d=0.75,
    )

    fig2 = draw(
        gt_scene,
        cam_pose,
        vox_origin,
        voxel_size=0.08,
        d=0.75,
    )
    
    return fig, fig2, img

description = """

ISO Demo on NYUv2 test set. 



For a fast rendering, we generate the output of test set scenes offline, and just provide a interface for plotting the output result.

We recommend you try visualization scripts locally in your computer for a better interaction.



<center>

    <a href="https://hongxiaoy.github.io/ISO/">

        <img style="display:inline" alt="Project page" src="https://img.shields.io/badge/Project%20Page-ISO-blue">

    </a>

    <a href="https://arxiv.org/abs/2407.11730"><img style="display:inline" src="https://img.shields.io/badge/arXiv-ISO-red"></a>

    <a href="https://github.com/hongxiaoy/ISO"><img style="display:inline" src="https://img.shields.io/github/stars/hongxiaoy/ISO?style=social"></a>

</center>

"""
title = """

<center>

    <h1>Monocular Occupancy Prediction for Scalable Indoor Scenes</h1>

</center>

"""

with gr.Blocks() as demo:
    gr.Markdown(title)  
    gr.Markdown(description)
    with gr.Row():
        with gr.Column():
            input = gr.Dropdown(all_test_scenes, label='input scan')
            submit_btn = gr.Button("Submit", render=True)
            img = gr.Image(label='color image')
        with gr.Column():
            output = gr.Plot(label='prediction')
            label = gr.Plot(label='ground truth')
    
    submit_btn.click(fn=predict, inputs=input, outputs=[output, label, img])

# demo = gr.Interface(fn=predict, inputs=gr.Dropdown(all_test_scenes), outputs=gr.Plot(), title=title, description=description)

demo.launch()