Upload app.py
Browse files
app.py
ADDED
@@ -0,0 +1,222 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import copy
|
2 |
+
import gradio as gr
|
3 |
+
import os
|
4 |
+
import pickle
|
5 |
+
from matplotlib import pyplot as plt
|
6 |
+
import plotly.express as px
|
7 |
+
import plotly.graph_objects as go
|
8 |
+
import numpy as np
|
9 |
+
|
10 |
+
|
11 |
+
|
12 |
+
all_test_scenes = sorted(os.listdir('iso_output/NYU'))
|
13 |
+
|
14 |
+
|
15 |
+
def get_grid_coords(dims, resolution):
|
16 |
+
"""
|
17 |
+
:param dims: the dimensions of the grid [x, y, z] (i.e. [256, 256, 32])
|
18 |
+
:return coords_grid: is the center coords of voxels in the grid
|
19 |
+
"""
|
20 |
+
|
21 |
+
g_xx = np.arange(0, dims[0] + 1)
|
22 |
+
g_yy = np.arange(0, dims[1] + 1)
|
23 |
+
|
24 |
+
g_zz = np.arange(0, dims[2] + 1)
|
25 |
+
|
26 |
+
# Obtaining the grid with coords...
|
27 |
+
xx, yy, zz = np.meshgrid(g_xx[:-1], g_yy[:-1], g_zz[:-1])
|
28 |
+
coords_grid = np.array([xx.flatten(), yy.flatten(), zz.flatten()]).T
|
29 |
+
# coords_grid = coords_grid.astype(np.float)
|
30 |
+
|
31 |
+
coords_grid = (coords_grid * resolution) + resolution / 2
|
32 |
+
|
33 |
+
temp = np.copy(coords_grid)
|
34 |
+
temp[:, 0] = coords_grid[:, 1]
|
35 |
+
temp[:, 1] = coords_grid[:, 0]
|
36 |
+
coords_grid = np.copy(temp)
|
37 |
+
|
38 |
+
return coords_grid
|
39 |
+
|
40 |
+
|
41 |
+
def draw(
|
42 |
+
voxels,
|
43 |
+
cam_pose,
|
44 |
+
vox_origin,
|
45 |
+
voxel_size=0.08,
|
46 |
+
d=0.75, # 0.75m - determine the size of the mesh representing the camera
|
47 |
+
):
|
48 |
+
# Compute the coordinates of the mesh representing camera
|
49 |
+
y = d * 480 / (2 * 518.8579)
|
50 |
+
x = d * 640 / (2 * 518.8579)
|
51 |
+
tri_points = np.array(
|
52 |
+
[
|
53 |
+
[0, 0, 0],
|
54 |
+
[x, y, d],
|
55 |
+
[-x, y, d],
|
56 |
+
[-x, -y, d],
|
57 |
+
[x, -y, d],
|
58 |
+
]
|
59 |
+
)
|
60 |
+
tri_points = np.hstack([tri_points, np.ones((5, 1))])
|
61 |
+
|
62 |
+
tri_points = (cam_pose @ tri_points.T).T
|
63 |
+
x = tri_points[:, 0] - vox_origin[0]
|
64 |
+
y = tri_points[:, 1] - vox_origin[1]
|
65 |
+
z = tri_points[:, 2] - vox_origin[2]
|
66 |
+
triangles = [
|
67 |
+
(0, 1, 2),
|
68 |
+
(0, 1, 4),
|
69 |
+
(0, 3, 4),
|
70 |
+
(0, 2, 3),
|
71 |
+
]
|
72 |
+
|
73 |
+
# Compute the voxels coordinates
|
74 |
+
grid_coords = get_grid_coords(
|
75 |
+
[voxels.shape[0], voxels.shape[2], voxels.shape[1]], voxel_size
|
76 |
+
)
|
77 |
+
|
78 |
+
# Attach the predicted class to every voxel
|
79 |
+
grid_coords = np.vstack(
|
80 |
+
(grid_coords.T, np.moveaxis(voxels, [0, 1, 2], [0, 2, 1]).reshape(-1))
|
81 |
+
).T
|
82 |
+
|
83 |
+
# Remove empty and unknown voxels
|
84 |
+
occupied_voxels = grid_coords[(grid_coords[:, 3] > 0) & (grid_coords[:, 3] < 255)]
|
85 |
+
|
86 |
+
|
87 |
+
colors = np.array(
|
88 |
+
[
|
89 |
+
[22, 191, 206, 255],
|
90 |
+
[214, 38, 40, 255],
|
91 |
+
[43, 160, 43, 255],
|
92 |
+
[158, 216, 229, 255],
|
93 |
+
[114, 158, 206, 255],
|
94 |
+
[204, 204, 91, 255],
|
95 |
+
[255, 186, 119, 255],
|
96 |
+
[147, 102, 188, 255],
|
97 |
+
[30, 119, 181, 255],
|
98 |
+
[188, 188, 33, 255],
|
99 |
+
[255, 127, 12, 255],
|
100 |
+
[196, 175, 214, 255],
|
101 |
+
[153, 153, 153, 255],
|
102 |
+
[255, 255, 255, 255],
|
103 |
+
]
|
104 |
+
)
|
105 |
+
|
106 |
+
pts_colors = [f'rgb({colors[int(i)][0]}, {colors[int(i)][1]}, {colors[int(i)][2]})' for i in occupied_voxels[:, 3]]
|
107 |
+
|
108 |
+
|
109 |
+
|
110 |
+
fig = go.Figure(data=[go.Scatter3d(x=occupied_voxels[:, 0], y=occupied_voxels[:, 1], z=occupied_voxels[:, 2],mode='markers',
|
111 |
+
marker=dict(
|
112 |
+
size=5,
|
113 |
+
color=pts_colors, # set color to an array/list of desired values
|
114 |
+
# colorscale='Viridis', # choose a colorscale
|
115 |
+
opacity=1.0,
|
116 |
+
symbol='square'
|
117 |
+
))])
|
118 |
+
fig.update_layout(
|
119 |
+
autosize=True,
|
120 |
+
scene = dict(
|
121 |
+
aspectmode='data',
|
122 |
+
xaxis = dict(
|
123 |
+
backgroundcolor="rgb(255, 255, 255)",
|
124 |
+
gridcolor="black",
|
125 |
+
showbackground=True,
|
126 |
+
zerolinecolor="black",
|
127 |
+
nticks=4,
|
128 |
+
visible=False,
|
129 |
+
range=[-5,5],),
|
130 |
+
yaxis = dict(
|
131 |
+
backgroundcolor="rgb(255, 255, 255)",
|
132 |
+
gridcolor="black",
|
133 |
+
showbackground=True,
|
134 |
+
zerolinecolor="black",
|
135 |
+
visible=False,
|
136 |
+
nticks=4, range=[-5,5],),
|
137 |
+
zaxis = dict(
|
138 |
+
backgroundcolor="rgb(255, 255, 255)",
|
139 |
+
gridcolor="black",
|
140 |
+
showbackground=True,
|
141 |
+
zerolinecolor="black",
|
142 |
+
visible=False,
|
143 |
+
nticks=4, range=[-5,5],),
|
144 |
+
bgcolor="black",
|
145 |
+
),
|
146 |
+
|
147 |
+
)
|
148 |
+
|
149 |
+
return fig
|
150 |
+
|
151 |
+
|
152 |
+
def predict(scan):
|
153 |
+
if scan is None:
|
154 |
+
return None, None, None
|
155 |
+
scan = 'iso_output/NYU/' + scan
|
156 |
+
with open(scan, "rb") as handle:
|
157 |
+
b = pickle.load(handle)
|
158 |
+
|
159 |
+
cam_pose = b["cam_pose"]
|
160 |
+
vox_origin = b["vox_origin"]
|
161 |
+
gt_scene = b["target"]
|
162 |
+
pred_scene = b["y_pred"]
|
163 |
+
scan = os.path.basename(scan)[:12]
|
164 |
+
img = plt.imread('iso_input/'+scan+'_color.jpg')
|
165 |
+
|
166 |
+
pred_scene[(gt_scene == 255)] = 255 # only draw scene inside the room
|
167 |
+
|
168 |
+
fig = draw(
|
169 |
+
pred_scene,
|
170 |
+
cam_pose,
|
171 |
+
vox_origin,
|
172 |
+
voxel_size=0.08,
|
173 |
+
d=0.75,
|
174 |
+
)
|
175 |
+
|
176 |
+
fig2 = draw(
|
177 |
+
gt_scene,
|
178 |
+
cam_pose,
|
179 |
+
vox_origin,
|
180 |
+
voxel_size=0.08,
|
181 |
+
d=0.75,
|
182 |
+
)
|
183 |
+
|
184 |
+
return fig, fig2, img
|
185 |
+
|
186 |
+
description = """
|
187 |
+
ISO Demo on NYUv2 test set.
|
188 |
+
|
189 |
+
For a fast rendering, we generate the output of test set scenes offline, and just provide a interface for plotting the output result.
|
190 |
+
We recommend you try visualization scripts locally in your computer for a better interaction.
|
191 |
+
|
192 |
+
<center>
|
193 |
+
<a href="https://hongxiaoy.github.io/ISO/">
|
194 |
+
<img style="display:inline" alt="Project page" src="https://img.shields.io/badge/Project%20Page-ISO-blue">
|
195 |
+
</a>
|
196 |
+
<a href="https://arxiv.org/abs/2407.11730"><img style="display:inline" src="https://img.shields.io/badge/arXiv-ISO-red"></a>
|
197 |
+
<a href="https://github.com/hongxiaoy/ISO"><img style="display:inline" src="https://img.shields.io/github/stars/hongxiaoy/ISO?style=social"></a>
|
198 |
+
</center>
|
199 |
+
"""
|
200 |
+
title = """
|
201 |
+
<center>
|
202 |
+
<h1>Monocular Occupancy Prediction for Scalable Indoor Scenes</h1>
|
203 |
+
</center>
|
204 |
+
"""
|
205 |
+
|
206 |
+
with gr.Blocks() as demo:
|
207 |
+
gr.Markdown(title)
|
208 |
+
gr.Markdown(description)
|
209 |
+
with gr.Row():
|
210 |
+
with gr.Column():
|
211 |
+
input = gr.Dropdown(all_test_scenes, label='input scan')
|
212 |
+
submit_btn = gr.Button("Submit", render=True)
|
213 |
+
img = gr.Image(label='color image')
|
214 |
+
with gr.Column():
|
215 |
+
output = gr.Plot(label='prediction')
|
216 |
+
label = gr.Plot(label='ground truth')
|
217 |
+
|
218 |
+
submit_btn.click(fn=predict, inputs=input, outputs=[output, label, img])
|
219 |
+
|
220 |
+
# demo = gr.Interface(fn=predict, inputs=gr.Dropdown(all_test_scenes), outputs=gr.Plot(), title=title, description=description)
|
221 |
+
|
222 |
+
demo.launch()
|