Update app.py
Browse files
app.py
CHANGED
@@ -3,59 +3,63 @@ from transformers import pipeline
|
|
3 |
import streamlit as st
|
4 |
import fitz # PyMuPDF for PDF text extraction
|
5 |
|
6 |
-
#
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
|
|
|
|
|
|
|
|
|
11 |
}
|
12 |
|
13 |
-
|
14 |
-
|
15 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
16 |
|
17 |
-
def simplify_text(text
|
18 |
try:
|
19 |
-
# T5 expects a "summarize: " prefix
|
20 |
if "t5" in model_name.lower():
|
21 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
22 |
|
23 |
-
|
24 |
-
return
|
25 |
except Exception as e:
|
26 |
return f"Error simplifying text: {e}"
|
27 |
|
28 |
-
def extract_text_from_pdf(
|
29 |
-
|
30 |
-
|
31 |
return text
|
32 |
|
33 |
-
#
|
34 |
-
# Streamlit UI
|
35 |
-
st.set_page_config(page_title="Jargon Simplifier", layout="centered")
|
36 |
-
st.title("🧠 Jargon to Simple: Academic Text Simplifier")
|
37 |
-
|
38 |
-
selected_model_name = st.selectbox("Choose a simplification model:", list(MODEL_OPTIONS.keys()))
|
39 |
-
model_id = MODEL_OPTIONS[selected_model_name]
|
40 |
-
simplifier = load_model(model_id)
|
41 |
-
|
42 |
option = st.radio("Choose input type:", ("Text Input", "Upload PDF"))
|
43 |
|
44 |
if option == "Text Input":
|
45 |
-
user_text = st.text_area("Enter complex academic text:")
|
46 |
-
if st.button("Simplify") and user_text
|
47 |
-
|
48 |
-
|
49 |
-
st.text_area("Simplified Output:", value=simplified_output, height=200)
|
50 |
|
51 |
elif option == "Upload PDF":
|
52 |
-
uploaded_file = st.file_uploader("Upload a PDF
|
53 |
-
if uploaded_file:
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
simplified_output = simplify_text(truncated_text, simplifier, model_id)
|
58 |
-
st.text_area("Simplified Output:", value=simplified_output, height=200)
|
59 |
|
60 |
st.markdown("---")
|
61 |
st.markdown("Made with ❤️ by Harshitha")
|
|
|
3 |
import streamlit as st
|
4 |
import fitz # PyMuPDF for PDF text extraction
|
5 |
|
6 |
+
# Streamlit UI setup
|
7 |
+
st.set_page_config(page_title="Text Simplifier", layout="centered")
|
8 |
+
st.title("🧠 Academic Text Simplifier")
|
9 |
+
|
10 |
+
# Model selection
|
11 |
+
model_options = {
|
12 |
+
"Mistral (Instruction-tuned)": "mistralai/Mistral-7B-Instruct-v0.1",
|
13 |
+
"T5 (Simplification finetuned)": "mrm8488/t5-base-finetuned-common_gen",
|
14 |
+
"BART (Paraphrasing/Simplification)": "tuner007/pegasus_paraphrase"
|
15 |
}
|
16 |
|
17 |
+
model_choice = st.selectbox("Choose a simplification model:", list(model_options.keys()))
|
18 |
+
model_name = model_options[model_choice]
|
19 |
+
|
20 |
+
@st.cache_resource(show_spinner=True)
|
21 |
+
def load_model(name):
|
22 |
+
task = "text2text-generation" if "t5" in name.lower() or "pegasus" in name.lower() else "text-generation"
|
23 |
+
return pipeline(task, model=name)
|
24 |
+
|
25 |
+
simplifier = load_model(model_name)
|
26 |
|
27 |
+
def simplify_text(text):
|
28 |
try:
|
|
|
29 |
if "t5" in model_name.lower():
|
30 |
+
prompt = f"simplify: {text}"
|
31 |
+
elif "mistral" in model_name.lower() or "instruct" in model_name.lower():
|
32 |
+
prompt = f"Rewrite the following text using simpler vocabulary and structure:\n{text}"
|
33 |
+
elif "pegasus" in model_name.lower():
|
34 |
+
prompt = f"paraphrase: {text}"
|
35 |
+
else:
|
36 |
+
prompt = text
|
37 |
|
38 |
+
output = simplifier(prompt, max_length=256, min_length=30, do_sample=False)[0]
|
39 |
+
return output.get('summary_text') or output.get('generated_text') or "(No output)"
|
40 |
except Exception as e:
|
41 |
return f"Error simplifying text: {e}"
|
42 |
|
43 |
+
def extract_text_from_pdf(pdf_file):
|
44 |
+
doc = fitz.open(stream=pdf_file.read(), filetype="pdf")
|
45 |
+
text = "\n".join(page.get_text("text") for page in doc)
|
46 |
return text
|
47 |
|
48 |
+
# Input options
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
49 |
option = st.radio("Choose input type:", ("Text Input", "Upload PDF"))
|
50 |
|
51 |
if option == "Text Input":
|
52 |
+
user_text = st.text_area("Enter your complex academic text here:", height=200)
|
53 |
+
if st.button("Simplify Text") and user_text:
|
54 |
+
simplified_text = simplify_text(user_text)
|
55 |
+
st.text_area("🔽 Simplified Text:", simplified_text, height=200)
|
|
|
56 |
|
57 |
elif option == "Upload PDF":
|
58 |
+
uploaded_file = st.file_uploader("Upload a PDF document", type=["pdf"])
|
59 |
+
if uploaded_file and st.button("Simplify Extracted Text"):
|
60 |
+
extracted_text = extract_text_from_pdf(uploaded_file)
|
61 |
+
simplified_text = simplify_text(extracted_text[:2000]) # limit for performance
|
62 |
+
st.text_area("🔽 Simplified Text from PDF:", simplified_text, height=200)
|
|
|
|
|
63 |
|
64 |
st.markdown("---")
|
65 |
st.markdown("Made with ❤️ by Harshitha")
|