Update app.py
Browse files
app.py
CHANGED
@@ -3,61 +3,59 @@ from transformers import pipeline
|
|
3 |
import streamlit as st
|
4 |
import fitz # PyMuPDF for PDF text extraction
|
5 |
|
6 |
-
|
7 |
-
|
8 |
-
st.title("π Jargon Simplifier")
|
9 |
-
st.write("This tool simplifies complex or academic text into easier, plain language.")
|
10 |
-
|
11 |
-
# ---------------------------- Available Models ----------------------------
|
12 |
MODEL_OPTIONS = {
|
13 |
-
"
|
14 |
-
"T5
|
15 |
-
"T5 Base (Prompted Simplify)": "t5-base"
|
16 |
}
|
17 |
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
@st.cache_resource(show_spinner=True)
|
23 |
-
def load_model(name):
|
24 |
-
return pipeline("text2text-generation", model=name)
|
25 |
|
26 |
-
simplifier
|
|
|
|
|
|
|
|
|
27 |
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
output = simplifier(text, max_length=256, min_length=30, do_sample=False)
|
33 |
-
return output[0]['generated_text']
|
34 |
|
35 |
-
# ---------------------------- PDF Extraction ----------------------------
|
36 |
def extract_text_from_pdf(uploaded_file):
|
37 |
with fitz.open(stream=uploaded_file.read(), filetype="pdf") as doc:
|
38 |
-
text = "\n".join(page.get_text(
|
39 |
return text
|
40 |
|
41 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
42 |
option = st.radio("Choose input type:", ("Text Input", "Upload PDF"))
|
43 |
|
44 |
if option == "Text Input":
|
45 |
-
user_text = st.text_area("
|
46 |
if st.button("Simplify") and user_text.strip():
|
47 |
-
|
48 |
-
|
|
|
49 |
|
50 |
elif option == "Upload PDF":
|
51 |
-
uploaded_file = st.file_uploader("
|
52 |
if uploaded_file:
|
53 |
-
|
54 |
extracted_text = extract_text_from_pdf(uploaded_file)
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
st.text_area("β
Simplified Output:", value=simplified_text, height=200)
|
59 |
-
except Exception as e:
|
60 |
-
st.error(f"β Error reading PDF: {e}")
|
61 |
|
62 |
st.markdown("---")
|
63 |
-
st.
|
|
|
3 |
import streamlit as st
|
4 |
import fitz # PyMuPDF for PDF text extraction
|
5 |
|
6 |
+
# ------------------------------
|
7 |
+
# Supported models
|
|
|
|
|
|
|
|
|
8 |
MODEL_OPTIONS = {
|
9 |
+
"Long T5 (Scientific Simplifier)": "pszemraj/long-t5-tglobal-base-sci-simplify",
|
10 |
+
"T5 Base (General Simplifier)": "t5-base"
|
|
|
11 |
}
|
12 |
|
13 |
+
@st.cache_resource
|
14 |
+
def load_model(model_name):
|
15 |
+
return pipeline("summarization", model=model_name)
|
|
|
|
|
|
|
|
|
16 |
|
17 |
+
def simplify_text(text, simplifier, model_name):
|
18 |
+
try:
|
19 |
+
# T5 expects a "summarize: " prefix
|
20 |
+
if "t5" in model_name.lower():
|
21 |
+
text = "summarize: " + text
|
22 |
|
23 |
+
simplified = simplifier(text, max_length=256, min_length=30, do_sample=False)
|
24 |
+
return simplified[0]['summary_text']
|
25 |
+
except Exception as e:
|
26 |
+
return f"Error simplifying text: {e}"
|
|
|
|
|
27 |
|
|
|
28 |
def extract_text_from_pdf(uploaded_file):
|
29 |
with fitz.open(stream=uploaded_file.read(), filetype="pdf") as doc:
|
30 |
+
text = "\n".join(page.get_text() for page in doc)
|
31 |
return text
|
32 |
|
33 |
+
# ------------------------------
|
34 |
+
# Streamlit UI
|
35 |
+
st.set_page_config(page_title="Jargon Simplifier", layout="centered")
|
36 |
+
st.title("π§ Jargon to Simple: Academic Text Simplifier")
|
37 |
+
|
38 |
+
selected_model_name = st.selectbox("Choose a simplification model:", list(MODEL_OPTIONS.keys()))
|
39 |
+
model_id = MODEL_OPTIONS[selected_model_name]
|
40 |
+
simplifier = load_model(model_id)
|
41 |
+
|
42 |
option = st.radio("Choose input type:", ("Text Input", "Upload PDF"))
|
43 |
|
44 |
if option == "Text Input":
|
45 |
+
user_text = st.text_area("Enter complex academic text:")
|
46 |
if st.button("Simplify") and user_text.strip():
|
47 |
+
with st.spinner("Simplifying..."):
|
48 |
+
simplified_output = simplify_text(user_text, simplifier, model_id)
|
49 |
+
st.text_area("Simplified Output:", value=simplified_output, height=200)
|
50 |
|
51 |
elif option == "Upload PDF":
|
52 |
+
uploaded_file = st.file_uploader("Upload a PDF file:", type=["pdf"])
|
53 |
if uploaded_file:
|
54 |
+
with st.spinner("Extracting and simplifying text..."):
|
55 |
extracted_text = extract_text_from_pdf(uploaded_file)
|
56 |
+
truncated_text = extracted_text[:2000] # Trim for model input
|
57 |
+
simplified_output = simplify_text(truncated_text, simplifier, model_id)
|
58 |
+
st.text_area("Simplified Output:", value=simplified_output, height=200)
|
|
|
|
|
|
|
59 |
|
60 |
st.markdown("---")
|
61 |
+
st.markdown("Made with β€οΈ by Harshitha")
|