Ponni / app.py
hareballak's picture
Update app.py
d6b85c0 verified
import os
# Disable hf_transfer for safer downloading
os.environ["HF_HUB_ENABLE_HF_TRANSFER"] = "0"
import gradio as gr
import requests
from sentence_transformers import SentenceTransformer, util
import torch
import json
import urllib.parse
import soundfile as sf
import time
# Fetch Hugging Face API Token securely from environment variables
HF_API_TOKEN = os.getenv("HF") # This fetches the token securely
# Updated model URLs for Whisper and LLaMA
WHISPER_API_URL = "https://api-inference.huggingface.co/models/openai/whisper-small"
LLAMA_API_URL = "https://api-inference.huggingface.co/models/abhinand/tamil-llama-7b-instruct-v0.2"
# Load SentenceTransformer model for retrieval
retriever_model = SentenceTransformer("distiluse-base-multilingual-cased-v2")
# Load dataset
with open("qa_dataset.json", "r", encoding="utf-8") as f:
qa_data = json.load(f)
# Function to transcribe audio using Whisper
def wait_for_model_ready(model_url, headers, timeout=300):
start_time = time.time()
while time.time() - start_time < timeout:
# Send a "dummy" GET request to check status
response = requests.get(model_url, headers=headers)
result = response.json()
if not ("error" in result and "loading" in result["error"].lower()):
print("✅ Model is ready!")
return True
print("⏳ Model is still loading, waiting 10 seconds...")
time.sleep(10)
print("❌ Model did not become ready in time.")
return False # timeout
def transcribe_audio(audio_file):
headers = {"Authorization": f"Bearer {HF_API_TOKEN}"}
# Wait for Whisper model to be ready
if not wait_for_model_ready(WHISPER_API_URL, headers):
return "Error: Whisper model did not load in time. Please try again later."
# Now send the audio after model is ready
with open(audio_file, "rb") as f:
response = requests.post(WHISPER_API_URL, headers=headers, data=f)
result = response.json()
print(result) # log response
return result.get("text", "Error: No transcription text returned.")
# Function to generate TTS audio URL (Google Translate API for Tamil Voice)
def get_tts_audio_url(text, lang="ta"):
# URL encode the text to ensure special characters are handled
safe_text = urllib.parse.quote(text)
return f"https://translate.google.com/translate_tts?ie=UTF-8&q={safe_text}&tl={lang}&client=tw-ob"
# Function to retrieve a relevant response from the Q&A dataset using SentenceTransformer
def get_bot_response(query):
query_embedding = retriever_model.encode(query, convert_to_tensor=True)
qa_embeddings = retriever_model.encode([qa["question"] for qa in qa_data], convert_to_tensor=True)
scores = util.pytorch_cos_sim(query_embedding, qa_embeddings)
best_idx = torch.argmax(scores)
top_qa = qa_data[best_idx]
prompt = f"""நீ ஒரு அறிவாளியான தமிழ் உதவியாளர்.
தகவல்கள்:
கேள்வி: {top_qa['question']}
பதில்: {top_qa['answer']}
மேலே உள்ள தகவல்களைப் பயன்படுத்தி, தெளிவான மற்றும் சுருக்கமான பதிலை வழங்கவும்.
உயர்கட்ட கேள்வி: {query}
பதில்:"""
headers = {"Authorization": f"Bearer {HF_API_TOKEN}"}
payload = {
"inputs": prompt,
"parameters": {
"temperature": 0.7,
"max_new_tokens": 150,
"return_full_text": False
},
}
# Post request
response = requests.post(LLAMA_API_URL, headers=headers, json=payload, timeout=300)
# Sometimes inference is slow ➔ Wait for result
start_time = time.time()
max_wait_seconds = 180 # 💬 wait up to 3 minutes if necessary
while True:
try:
result = response.json()
if isinstance(result, list) and "generated_text" in result[0]:
return result[0]["generated_text"]
elif "error" in result and "loading" in result["error"].lower():
print("⏳ Model is loading, waiting 10 seconds...")
time.sleep(10)
else:
return "மன்னிக்கவும், நான் இந்த கேள்விக்கு பதில் தர முடியவில்லை."
except Exception as e:
if time.time() - start_time > max_wait_seconds:
return f"Error: Timeout while waiting for model prediction after {max_wait_seconds} seconds."
print(f"Waiting for model to respond... {str(e)}")
time.sleep(5) # wait 5 seconds before retry
# Gradio interface function
def chatbot(audio, message, system_message, max_tokens, temperature, top_p):
if audio is not None:
sample_rate, audio_data = audio # ✅ Correct order
sf.write("temp.wav", audio_data, sample_rate) # Save audio
try:
transcript = transcribe_audio("temp.wav")
message = transcript # Use transcribed text
except Exception as e:
return f"Audio transcription failed: {str(e)}", None
try:
response = get_bot_response(message)
audio_url = get_tts_audio_url(response)
return response, audio_url
except Exception as e:
return f"Error in generating response: {str(e)}", None
# Define Gradio interface
demo = gr.Interface(
fn=chatbot,
inputs=[
gr.Audio(type="numpy", label="Speak to the Bot"), # Adjusted for microphone input
gr.Textbox(value="How can I help you?", label="Text Input (optional)"),
gr.Textbox(value="You are a friendly chatbot.", label="System message"),
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
gr.Slider(minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p (nucleus sampling)"),
],
outputs=[gr.Textbox(label="Response"), gr.Audio(label="Bot's Voice Response (Tamil)")],
live=True,
)
if __name__ == "__main__":
demo.launch()