Spaces:
Sleeping
Sleeping
import os | |
# Disable hf_transfer for safer downloading | |
os.environ["HF_HUB_ENABLE_HF_TRANSFER"] = "0" | |
import gradio as gr | |
import requests | |
from sentence_transformers import SentenceTransformer, util | |
import torch | |
import json | |
import urllib.parse | |
import soundfile as sf | |
import time | |
# Fetch Hugging Face API Token securely from environment variables | |
HF_API_TOKEN = os.getenv("HF") # This fetches the token securely | |
# Updated model URLs for Whisper and LLaMA | |
WHISPER_API_URL = "https://api-inference.huggingface.co/models/openai/whisper-small" | |
LLAMA_API_URL = "https://api-inference.huggingface.co/models/abhinand/tamil-llama-7b-instruct-v0.2" | |
# Load SentenceTransformer model for retrieval | |
retriever_model = SentenceTransformer("distiluse-base-multilingual-cased-v2") | |
# Load dataset | |
with open("qa_dataset.json", "r", encoding="utf-8") as f: | |
qa_data = json.load(f) | |
# Function to transcribe audio using Whisper | |
def wait_for_model_ready(model_url, headers, timeout=300): | |
start_time = time.time() | |
while time.time() - start_time < timeout: | |
# Send a "dummy" GET request to check status | |
response = requests.get(model_url, headers=headers) | |
result = response.json() | |
if not ("error" in result and "loading" in result["error"].lower()): | |
print("✅ Model is ready!") | |
return True | |
print("⏳ Model is still loading, waiting 10 seconds...") | |
time.sleep(10) | |
print("❌ Model did not become ready in time.") | |
return False # timeout | |
def transcribe_audio(audio_file): | |
headers = {"Authorization": f"Bearer {HF_API_TOKEN}"} | |
# Wait for Whisper model to be ready | |
if not wait_for_model_ready(WHISPER_API_URL, headers): | |
return "Error: Whisper model did not load in time. Please try again later." | |
# Now send the audio after model is ready | |
with open(audio_file, "rb") as f: | |
response = requests.post(WHISPER_API_URL, headers=headers, data=f) | |
result = response.json() | |
print(result) # log response | |
return result.get("text", "Error: No transcription text returned.") | |
# Function to generate TTS audio URL (Google Translate API for Tamil Voice) | |
def get_tts_audio_url(text, lang="ta"): | |
# URL encode the text to ensure special characters are handled | |
safe_text = urllib.parse.quote(text) | |
return f"https://translate.google.com/translate_tts?ie=UTF-8&q={safe_text}&tl={lang}&client=tw-ob" | |
# Function to retrieve a relevant response from the Q&A dataset using SentenceTransformer | |
def get_bot_response(query): | |
query_embedding = retriever_model.encode(query, convert_to_tensor=True) | |
qa_embeddings = retriever_model.encode([qa["question"] for qa in qa_data], convert_to_tensor=True) | |
scores = util.pytorch_cos_sim(query_embedding, qa_embeddings) | |
best_idx = torch.argmax(scores) | |
top_qa = qa_data[best_idx] | |
prompt = f"""நீ ஒரு அறிவாளியான தமிழ் உதவியாளர். | |
தகவல்கள்: | |
கேள்வி: {top_qa['question']} | |
பதில்: {top_qa['answer']} | |
மேலே உள்ள தகவல்களைப் பயன்படுத்தி, தெளிவான மற்றும் சுருக்கமான பதிலை வழங்கவும். | |
உயர்கட்ட கேள்வி: {query} | |
பதில்:""" | |
headers = {"Authorization": f"Bearer {HF_API_TOKEN}"} | |
payload = { | |
"inputs": prompt, | |
"parameters": { | |
"temperature": 0.7, | |
"max_new_tokens": 150, | |
"return_full_text": False | |
}, | |
} | |
# Post request | |
response = requests.post(LLAMA_API_URL, headers=headers, json=payload, timeout=300) | |
# Sometimes inference is slow ➔ Wait for result | |
start_time = time.time() | |
max_wait_seconds = 180 # 💬 wait up to 3 minutes if necessary | |
while True: | |
try: | |
result = response.json() | |
if isinstance(result, list) and "generated_text" in result[0]: | |
return result[0]["generated_text"] | |
elif "error" in result and "loading" in result["error"].lower(): | |
print("⏳ Model is loading, waiting 10 seconds...") | |
time.sleep(10) | |
else: | |
return "மன்னிக்கவும், நான் இந்த கேள்விக்கு பதில் தர முடியவில்லை." | |
except Exception as e: | |
if time.time() - start_time > max_wait_seconds: | |
return f"Error: Timeout while waiting for model prediction after {max_wait_seconds} seconds." | |
print(f"Waiting for model to respond... {str(e)}") | |
time.sleep(5) # wait 5 seconds before retry | |
# Gradio interface function | |
def chatbot(audio, message, system_message, max_tokens, temperature, top_p): | |
if audio is not None: | |
sample_rate, audio_data = audio # ✅ Correct order | |
sf.write("temp.wav", audio_data, sample_rate) # Save audio | |
try: | |
transcript = transcribe_audio("temp.wav") | |
message = transcript # Use transcribed text | |
except Exception as e: | |
return f"Audio transcription failed: {str(e)}", None | |
try: | |
response = get_bot_response(message) | |
audio_url = get_tts_audio_url(response) | |
return response, audio_url | |
except Exception as e: | |
return f"Error in generating response: {str(e)}", None | |
# Define Gradio interface | |
demo = gr.Interface( | |
fn=chatbot, | |
inputs=[ | |
gr.Audio(type="numpy", label="Speak to the Bot"), # Adjusted for microphone input | |
gr.Textbox(value="How can I help you?", label="Text Input (optional)"), | |
gr.Textbox(value="You are a friendly chatbot.", label="System message"), | |
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"), | |
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"), | |
gr.Slider(minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p (nucleus sampling)"), | |
], | |
outputs=[gr.Textbox(label="Response"), gr.Audio(label="Bot's Voice Response (Tamil)")], | |
live=True, | |
) | |
if __name__ == "__main__": | |
demo.launch() | |