import os # Disable hf_transfer for safer downloading os.environ["HF_HUB_ENABLE_HF_TRANSFER"] = "0" import gradio as gr import requests from sentence_transformers import SentenceTransformer, util import torch import json import urllib.parse import soundfile as sf import time # Fetch Hugging Face API Token securely from environment variables HF_API_TOKEN = os.getenv("HF") # This fetches the token securely # Updated model URLs for Whisper and LLaMA WHISPER_API_URL = "https://api-inference.huggingface.co/models/openai/whisper-small" LLAMA_API_URL = "https://api-inference.huggingface.co/models/abhinand/tamil-llama-7b-instruct-v0.2" # Load SentenceTransformer model for retrieval retriever_model = SentenceTransformer("distiluse-base-multilingual-cased-v2") # Load dataset with open("qa_dataset.json", "r", encoding="utf-8") as f: qa_data = json.load(f) # Function to transcribe audio using Whisper def wait_for_model_ready(model_url, headers, timeout=300): start_time = time.time() while time.time() - start_time < timeout: # Send a "dummy" GET request to check status response = requests.get(model_url, headers=headers) result = response.json() if not ("error" in result and "loading" in result["error"].lower()): print("✅ Model is ready!") return True print("⏳ Model is still loading, waiting 10 seconds...") time.sleep(10) print("❌ Model did not become ready in time.") return False # timeout def transcribe_audio(audio_file): headers = {"Authorization": f"Bearer {HF_API_TOKEN}"} # Wait for Whisper model to be ready if not wait_for_model_ready(WHISPER_API_URL, headers): return "Error: Whisper model did not load in time. Please try again later." # Now send the audio after model is ready with open(audio_file, "rb") as f: response = requests.post(WHISPER_API_URL, headers=headers, data=f) result = response.json() print(result) # log response return result.get("text", "Error: No transcription text returned.") # Function to generate TTS audio URL (Google Translate API for Tamil Voice) def get_tts_audio_url(text, lang="ta"): # URL encode the text to ensure special characters are handled safe_text = urllib.parse.quote(text) return f"https://translate.google.com/translate_tts?ie=UTF-8&q={safe_text}&tl={lang}&client=tw-ob" # Function to retrieve a relevant response from the Q&A dataset using SentenceTransformer def get_bot_response(query): query_embedding = retriever_model.encode(query, convert_to_tensor=True) qa_embeddings = retriever_model.encode([qa["question"] for qa in qa_data], convert_to_tensor=True) scores = util.pytorch_cos_sim(query_embedding, qa_embeddings) best_idx = torch.argmax(scores) top_qa = qa_data[best_idx] prompt = f"""நீ ஒரு அறிவாளியான தமிழ் உதவியாளர். தகவல்கள்: கேள்வி: {top_qa['question']} பதில்: {top_qa['answer']} மேலே உள்ள தகவல்களைப் பயன்படுத்தி, தெளிவான மற்றும் சுருக்கமான பதிலை வழங்கவும். உயர்கட்ட கேள்வி: {query} பதில்:""" headers = {"Authorization": f"Bearer {HF_API_TOKEN}"} payload = { "inputs": prompt, "parameters": { "temperature": 0.7, "max_new_tokens": 150, "return_full_text": False }, } # Post request response = requests.post(LLAMA_API_URL, headers=headers, json=payload, timeout=300) # Sometimes inference is slow ➔ Wait for result start_time = time.time() max_wait_seconds = 180 # 💬 wait up to 3 minutes if necessary while True: try: result = response.json() if isinstance(result, list) and "generated_text" in result[0]: return result[0]["generated_text"] elif "error" in result and "loading" in result["error"].lower(): print("⏳ Model is loading, waiting 10 seconds...") time.sleep(10) else: return "மன்னிக்கவும், நான் இந்த கேள்விக்கு பதில் தர முடியவில்லை." except Exception as e: if time.time() - start_time > max_wait_seconds: return f"Error: Timeout while waiting for model prediction after {max_wait_seconds} seconds." print(f"Waiting for model to respond... {str(e)}") time.sleep(5) # wait 5 seconds before retry # Gradio interface function def chatbot(audio, message, system_message, max_tokens, temperature, top_p): if audio is not None: sample_rate, audio_data = audio # ✅ Correct order sf.write("temp.wav", audio_data, sample_rate) # Save audio try: transcript = transcribe_audio("temp.wav") message = transcript # Use transcribed text except Exception as e: return f"Audio transcription failed: {str(e)}", None try: response = get_bot_response(message) audio_url = get_tts_audio_url(response) return response, audio_url except Exception as e: return f"Error in generating response: {str(e)}", None # Define Gradio interface demo = gr.Interface( fn=chatbot, inputs=[ gr.Audio(type="numpy", label="Speak to the Bot"), # Adjusted for microphone input gr.Textbox(value="How can I help you?", label="Text Input (optional)"), gr.Textbox(value="You are a friendly chatbot.", label="System message"), gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"), gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"), gr.Slider(minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p (nucleus sampling)"), ], outputs=[gr.Textbox(label="Response"), gr.Audio(label="Bot's Voice Response (Tamil)")], live=True, ) if __name__ == "__main__": demo.launch()