Ponni / app.py
hareballak's picture
Update app.py
0671449 verified
raw
history blame
3.92 kB
import os
import gradio as gr
import requests
from sentence_transformers import SentenceTransformer, util
import torch
import json
import urllib.parse
# Fetch Hugging Face API Token securely from environment variables
HF_API_TOKEN = os.getenv("HF_API_TOKEN") # This fetches the token securely
WHISPER_API_URL = "https://api-inference.huggingface.co/models/openai/whisper-large"
LLAMA_API_URL = "https://api-inference.huggingface.co/models/meta-llama/Llama-2-7b-chat-hf"
# Load SentenceTransformer model for retrieval
retriever_model = SentenceTransformer("distiluse-base-multilingual-cased-v2")
# Load dataset
with open("qa_dataset.json", "r", encoding="utf-8") as f:
qa_data = json.load(f)
# Function to transcribe audio using Whisper
def transcribe_audio(audio_file):
headers = {"Authorization": f"Bearer {HF_API_TOKEN}"}
with open(audio_file, "rb") as f:
response = requests.post(WHISPER_API_URL, headers=headers, data=f)
return response.json()["text"]
# Function to generate TTS audio URL (Google Translate API for Tamil Voice)
def get_tts_audio_url(text, lang="ta"):
safe_text = text.replace(" ", "+")
return f"https://translate.google.com/translate_tts?ie=UTF-8&q={safe_text}&tl={lang}&client=tw-ob"
# Function to retrieve a relevant response from the Q&A dataset using SentenceTransformer
def get_bot_response(query):
query_embedding = retriever_model.encode(query, convert_to_tensor=True)
qa_embeddings = retriever_model.encode([qa["question"] for qa in qa_data], convert_to_tensor=True)
scores = util.pytorch_cos_sim(query_embedding, qa_embeddings)
best_idx = torch.argmax(scores)
top_qa = qa_data[best_idx]
prompt = f"User asked: {query}\nRelevant FAQ: {top_qa['question']}\nAnswer: {top_qa['answer']}\nNow generate a helpful and fluent Tamil response to the user query."
# Use LLaMA for generating the refined response
headers = {"Authorization": f"Bearer {HF_API_TOKEN}"}
payload = {
"inputs": prompt,
"parameters": {"temperature": 0.7, "max_new_tokens": 150, "return_full_text": False},
}
response = requests.post(LLAMA_API_URL, headers=headers, json=payload)
result = response.json()
if isinstance(result, list) and "generated_text" in result[0]:
return result[0]["generated_text"]
else:
return "மன்னிக்கவும், நான் இந்த கேள்விக்கு பதில் தர முடியவில்லை."
# Gradio interface function
def chatbot(audio, message, history, system_message, max_tokens, temperature, top_p):
if audio is not None:
# Save the audio file temporarily
with open("temp.wav", "wb") as f:
f.write(audio.read())
# Transcribe the audio using Whisper
transcript = transcribe_audio("temp.wav")
message = transcript # Use the transcript as the input message
# Get the bot response using the text input or transcribed audio
response = get_bot_response(message)
# Generate the TTS audio URL
audio_url = get_tts_audio_url(response)
return response, audio_url
# Define Gradio interface
demo = gr.Interface(
fn=chatbot,
inputs=[
gr.Audio(source="microphone", type="file", label="Speak to the Bot"),
gr.Textbox(value="How can I help you?", label="Text Input (optional)"),
gr.State(),
gr.Textbox(value="You are a friendly chatbot.", label="System message"),
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
gr.Slider(minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p (nucleus sampling)"),
],
outputs=[gr.Textbox(label="Response"), gr.Audio(label="Bot's Voice Response (Tamil)")],
live=True,
)
if __name__ == "__main__":
demo.launch()