hareballak commited on
Commit
0671449
·
verified ·
1 Parent(s): 79378eb

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +87 -56
app.py CHANGED
@@ -1,64 +1,95 @@
 
1
  import gradio as gr
2
- from huggingface_hub import InferenceClient
3
-
4
- """
5
- For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
6
- """
7
- client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
8
-
9
-
10
- def respond(
11
- message,
12
- history: list[tuple[str, str]],
13
- system_message,
14
- max_tokens,
15
- temperature,
16
- top_p,
17
- ):
18
- messages = [{"role": "system", "content": system_message}]
19
-
20
- for val in history:
21
- if val[0]:
22
- messages.append({"role": "user", "content": val[0]})
23
- if val[1]:
24
- messages.append({"role": "assistant", "content": val[1]})
25
-
26
- messages.append({"role": "user", "content": message})
27
-
28
- response = ""
29
-
30
- for message in client.chat_completion(
31
- messages,
32
- max_tokens=max_tokens,
33
- stream=True,
34
- temperature=temperature,
35
- top_p=top_p,
36
- ):
37
- token = message.choices[0].delta.content
38
-
39
- response += token
40
- yield response
41
-
42
-
43
- """
44
- For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
45
- """
46
- demo = gr.ChatInterface(
47
- respond,
48
- additional_inputs=[
49
- gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
50
  gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
51
  gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
52
- gr.Slider(
53
- minimum=0.1,
54
- maximum=1.0,
55
- value=0.95,
56
- step=0.05,
57
- label="Top-p (nucleus sampling)",
58
- ),
59
  ],
 
 
60
  )
61
 
62
-
63
  if __name__ == "__main__":
64
  demo.launch()
 
1
+ import os
2
  import gradio as gr
3
+ import requests
4
+ from sentence_transformers import SentenceTransformer, util
5
+ import torch
6
+ import json
7
+ import urllib.parse
8
+
9
+ # Fetch Hugging Face API Token securely from environment variables
10
+ HF_API_TOKEN = os.getenv("HF_API_TOKEN") # This fetches the token securely
11
+
12
+ WHISPER_API_URL = "https://api-inference.huggingface.co/models/openai/whisper-large"
13
+ LLAMA_API_URL = "https://api-inference.huggingface.co/models/meta-llama/Llama-2-7b-chat-hf"
14
+
15
+ # Load SentenceTransformer model for retrieval
16
+ retriever_model = SentenceTransformer("distiluse-base-multilingual-cased-v2")
17
+
18
+ # Load dataset
19
+ with open("qa_dataset.json", "r", encoding="utf-8") as f:
20
+ qa_data = json.load(f)
21
+
22
+ # Function to transcribe audio using Whisper
23
+ def transcribe_audio(audio_file):
24
+ headers = {"Authorization": f"Bearer {HF_API_TOKEN}"}
25
+ with open(audio_file, "rb") as f:
26
+ response = requests.post(WHISPER_API_URL, headers=headers, data=f)
27
+ return response.json()["text"]
28
+
29
+ # Function to generate TTS audio URL (Google Translate API for Tamil Voice)
30
+ def get_tts_audio_url(text, lang="ta"):
31
+ safe_text = text.replace(" ", "+")
32
+ return f"https://translate.google.com/translate_tts?ie=UTF-8&q={safe_text}&tl={lang}&client=tw-ob"
33
+
34
+ # Function to retrieve a relevant response from the Q&A dataset using SentenceTransformer
35
+ def get_bot_response(query):
36
+ query_embedding = retriever_model.encode(query, convert_to_tensor=True)
37
+ qa_embeddings = retriever_model.encode([qa["question"] for qa in qa_data], convert_to_tensor=True)
38
+
39
+ scores = util.pytorch_cos_sim(query_embedding, qa_embeddings)
40
+ best_idx = torch.argmax(scores)
41
+
42
+ top_qa = qa_data[best_idx]
43
+ prompt = f"User asked: {query}\nRelevant FAQ: {top_qa['question']}\nAnswer: {top_qa['answer']}\nNow generate a helpful and fluent Tamil response to the user query."
44
+
45
+ # Use LLaMA for generating the refined response
46
+ headers = {"Authorization": f"Bearer {HF_API_TOKEN}"}
47
+ payload = {
48
+ "inputs": prompt,
49
+ "parameters": {"temperature": 0.7, "max_new_tokens": 150, "return_full_text": False},
50
+ }
51
+ response = requests.post(LLAMA_API_URL, headers=headers, json=payload)
52
+ result = response.json()
53
+
54
+ if isinstance(result, list) and "generated_text" in result[0]:
55
+ return result[0]["generated_text"]
56
+ else:
57
+ return "மன்னிக்கவும், நான் இந்த கேள்விக்கு பதில் தர முடியவில்லை."
58
+
59
+ # Gradio interface function
60
+ def chatbot(audio, message, history, system_message, max_tokens, temperature, top_p):
61
+ if audio is not None:
62
+ # Save the audio file temporarily
63
+ with open("temp.wav", "wb") as f:
64
+ f.write(audio.read())
65
+
66
+ # Transcribe the audio using Whisper
67
+ transcript = transcribe_audio("temp.wav")
68
+ message = transcript # Use the transcript as the input message
69
+
70
+ # Get the bot response using the text input or transcribed audio
71
+ response = get_bot_response(message)
72
+
73
+ # Generate the TTS audio URL
74
+ audio_url = get_tts_audio_url(response)
75
+
76
+ return response, audio_url
77
+
78
+ # Define Gradio interface
79
+ demo = gr.Interface(
80
+ fn=chatbot,
81
+ inputs=[
82
+ gr.Audio(source="microphone", type="file", label="Speak to the Bot"),
83
+ gr.Textbox(value="How can I help you?", label="Text Input (optional)"),
84
+ gr.State(),
85
+ gr.Textbox(value="You are a friendly chatbot.", label="System message"),
86
  gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
87
  gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
88
+ gr.Slider(minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p (nucleus sampling)"),
 
 
 
 
 
 
89
  ],
90
+ outputs=[gr.Textbox(label="Response"), gr.Audio(label="Bot's Voice Response (Tamil)")],
91
+ live=True,
92
  )
93
 
 
94
  if __name__ == "__main__":
95
  demo.launch()