hashiruAI / src /manager /llm_models.py
Kunal Pai
Add GroqAgent and GroqModelManager implementations for Groq model integration
e0964c2
from abc import ABC, abstractmethod
import ollama
from pydantic import BaseModel
from pathlib import Path
from google import genai
from google.genai import types
from mistralai import Mistral
from groq import Groq
from src.manager.utils.streamlit_interface import output_assistant_response
class AbstractModelManager(ABC):
def __init__(self, model_name, system_prompt_file="system.prompt"):
self.model_name = model_name
script_dir = Path(__file__).parent
self.system_prompt_file = script_dir / system_prompt_file
@abstractmethod
def is_model_loaded(self, model):
pass
@abstractmethod
def create_model(self, base_model, context_window=4096, temperature=0):
pass
@abstractmethod
def request(self, prompt):
pass
@abstractmethod
def delete(self):
pass
class OllamaModelManager(AbstractModelManager):
def is_model_loaded(self, model):
loaded_models = [m.model for m in ollama.list().models]
return model in loaded_models or f'{model}:latest' in loaded_models
def create_model(self, base_model, context_window=4096, temperature=0):
with open(self.system_prompt_file, 'r') as f:
system = f.read()
if not self.is_model_loaded(self.model_name):
output_assistant_response(f"Creating model {self.model_name}")
ollama.create(
model=self.model_name,
from_=base_model,
system=system,
parameters={
"num_ctx": context_window,
"temperature": temperature
}
)
def request(self, prompt):
response = ollama.chat(
model=self.model_name,
messages=[{"role": "user", "content": prompt}],
)
response = response['message']['content']
return response
def delete(self):
if self.is_model_loaded("C2Rust:latest"):
output_assistant_response(f"Deleting model {self.model_name}")
ollama.delete("C2Rust:latest")
else:
output_assistant_response(f"Model {self.model_name} not found, skipping deletion.")
class GeminiModelManager(AbstractModelManager):
def __init__(self, api_key):
super().__init__()
self.client = genai.Client(api_key=api_key)
self.model = "gemini-2.0-flash"
# read system prompt from file
with open(self.system_prompt_file, 'r') as f:
self.system_instruction = f.read()
def is_model_loaded(self, model):
# Check if the specified model is the one set in the manager
return model == self.model
def create_model(self, base_model=None, context_window=4096, temperature=0):
# Initialize the Gemini model settings (if applicable)
self.model = base_model if base_model else "gemini-2.0-flash"
def request(self, prompt, temperature=0, context_window=4096):
# Request response from the Gemini model
response = self.client.models.generate_content(
model=self.model,
contents=prompt,
config=types.GenerateContentConfig(
temperature=temperature,
max_output_tokens=context_window,
system_instruction=self.system_instruction,
)
)
return response.text
def delete(self):
# Implement model deletion logic (if applicable)
self.model = None
class MistralModelManager(AbstractModelManager):
def __init__(self, api_key, model_name="mistral-small-latest", system_prompt_file="system.prompt"):
super().__init__()
self.client = Mistral(api_key=api_key)
self.model = model_name
# read system prompt from file
with open(self.system_prompt_file, 'r') as f:
self.system_instruction = f.read()
def is_model_loaded(self, model):
# Check if the specified model is the one set in the manager
return model == self.model
def create_model(self, base_model=None, context_window=4096, temperature=0):
# Initialize the Mistral model settings (if applicable)
self.model = base_model if base_model else "mistral-small-latest"
def request(self, prompt, temperature=0, context_window=4096):
# Request response from the Mistral model
response = self.client.chat.complete(
messages=[
{
"role":"user",
"content": self.system_instruction + "\n" + prompt,
}
],
model=self.model,
temperature=temperature,
max_tokens=context_window,
)
return response.text
def delete(self):
# Implement model deletion logic (if applicable)
self.model = None
class GroqModelManager(AbstractModelManager):
def __init__(self, api_key, model_name="llama-3.3-70b-versatile", system_prompt_file="system.prompt"):
super().__init__(model_name, system_prompt_file)
self.client = Groq(api_key=api_key)
def is_model_loaded(self, model):
# Groq models are referenced by name; assume always available if name matches
return model == self.model_name
def create_model(self, base_model=None, context_window=4096, temperature=0):
# Groq does not require explicit creation; no-op
if not self.is_model_loaded(self.model_name):
output_assistant_response(f"Model {self.model_name} is not available on Groq.")
def request(self, prompt, temperature=0, context_window=4096):
# Read system instruction
with open(self.system_prompt_file, 'r') as f:
system_instruction = f.read()
# Build messages
messages = [
{"role": "system", "content": system_instruction},
{"role": "user", "content": prompt}
]
# Send request
response = self.client.chat.completions.create(
messages=messages,
model=self.model_name,
temperature=temperature
)
# Extract and return content
return response.choices[0].message.content
def delete(self):
# No deletion support for Groq-managed models
output_assistant_response(f"Deletion not supported for Groq model {self.model_name}.")