File size: 6,364 Bytes
ffe6e74
 
 
 
 
 
 
e0964c2
2f85c93
ffe6e74
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
434b328
ffe6e74
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
434b328
ffe6e74
 
434b328
ffe6e74
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e0964c2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
from abc import ABC, abstractmethod
import ollama
from pydantic import BaseModel
from pathlib import Path
from google import genai
from google.genai import types
from mistralai import Mistral
from groq import Groq
from src.manager.utils.streamlit_interface import output_assistant_response


class AbstractModelManager(ABC):
    def __init__(self, model_name, system_prompt_file="system.prompt"):
        self.model_name = model_name
        script_dir = Path(__file__).parent
        self.system_prompt_file = script_dir / system_prompt_file

    @abstractmethod
    def is_model_loaded(self, model):
        pass

    @abstractmethod
    def create_model(self, base_model, context_window=4096, temperature=0):
        pass

    @abstractmethod
    def request(self, prompt):
        pass

    @abstractmethod
    def delete(self):
        pass

class OllamaModelManager(AbstractModelManager):
    def is_model_loaded(self, model):
        loaded_models = [m.model for m in ollama.list().models]
        return model in loaded_models or f'{model}:latest' in loaded_models

    def create_model(self, base_model, context_window=4096, temperature=0):
        with open(self.system_prompt_file, 'r') as f:
            system = f.read()
        
        if not self.is_model_loaded(self.model_name):
            output_assistant_response(f"Creating model {self.model_name}")
            ollama.create(
                model=self.model_name,
                from_=base_model,
                system=system,
                parameters={
                    "num_ctx": context_window,
                    "temperature": temperature
                }
            )

    def request(self, prompt):
        response = ollama.chat(
            model=self.model_name, 
            messages=[{"role": "user", "content": prompt}],
        )
        response = response['message']['content']
        return response
    
    def delete(self):
        if self.is_model_loaded("C2Rust:latest"):
            output_assistant_response(f"Deleting model {self.model_name}")
            ollama.delete("C2Rust:latest")
        else:
            output_assistant_response(f"Model {self.model_name} not found, skipping deletion.")

class GeminiModelManager(AbstractModelManager):
    def __init__(self, api_key):
        super().__init__()
        self.client = genai.Client(api_key=api_key)
        self.model = "gemini-2.0-flash"
        # read system prompt from file
        with open(self.system_prompt_file, 'r') as f:
            self.system_instruction = f.read()


    def is_model_loaded(self, model):
        # Check if the specified model is the one set in the manager
        return model == self.model

    def create_model(self, base_model=None, context_window=4096, temperature=0):
        # Initialize the Gemini model settings (if applicable)
        self.model = base_model if base_model else "gemini-2.0-flash"

    def request(self, prompt, temperature=0, context_window=4096):
        # Request response from the Gemini model
        response = self.client.models.generate_content(
            model=self.model,
            contents=prompt,
            config=types.GenerateContentConfig(
                temperature=temperature,
                max_output_tokens=context_window,
                system_instruction=self.system_instruction,
            )
        )
        return response.text

    def delete(self):
        # Implement model deletion logic (if applicable)
        self.model = None

class MistralModelManager(AbstractModelManager):
    def __init__(self, api_key, model_name="mistral-small-latest", system_prompt_file="system.prompt"):
        super().__init__()
        self.client = Mistral(api_key=api_key)
        self.model = model_name
        # read system prompt from file
        with open(self.system_prompt_file, 'r') as f:
            self.system_instruction = f.read()

    def is_model_loaded(self, model):
        # Check if the specified model is the one set in the manager
        return model == self.model

    def create_model(self, base_model=None, context_window=4096, temperature=0):
        # Initialize the Mistral model settings (if applicable)
        self.model = base_model if base_model else "mistral-small-latest"

    def request(self, prompt, temperature=0, context_window=4096):
        # Request response from the Mistral model
        response = self.client.chat.complete(
            messages=[
            {
                "role":"user",
                "content": self.system_instruction + "\n" + prompt,
            }
            ],
            model=self.model,
            temperature=temperature,
            max_tokens=context_window,
        )
        return response.text

    def delete(self):
        # Implement model deletion logic (if applicable)
        self.model = None

class GroqModelManager(AbstractModelManager):
    def __init__(self, api_key, model_name="llama-3.3-70b-versatile", system_prompt_file="system.prompt"):
        super().__init__(model_name, system_prompt_file)
        self.client = Groq(api_key=api_key)

    def is_model_loaded(self, model):
        # Groq models are referenced by name; assume always available if name matches
        return model == self.model_name

    def create_model(self, base_model=None, context_window=4096, temperature=0):
        # Groq does not require explicit creation; no-op
        if not self.is_model_loaded(self.model_name):
            output_assistant_response(f"Model {self.model_name} is not available on Groq.")

    def request(self, prompt, temperature=0, context_window=4096):
        # Read system instruction
        with open(self.system_prompt_file, 'r') as f:
            system_instruction = f.read()

        # Build messages
        messages = [
            {"role": "system", "content": system_instruction},
            {"role": "user", "content": prompt}
        ]

        # Send request
        response = self.client.chat.completions.create(
            messages=messages,
            model=self.model_name,
            temperature=temperature
        )

        # Extract and return content
        return response.choices[0].message.content

    def delete(self):
        # No deletion support for Groq-managed models
        output_assistant_response(f"Deletion not supported for Groq model {self.model_name}.")