Spaces:
Runtime error
Runtime error
File size: 1,590 Bytes
24ec802 31ae6cb 24ec802 e26b373 070c5e5 2c1d0fb 24ec802 784a279 7150cb8 24ec802 2c1d0fb 24ec802 7150cb8 784a279 11b39fc 7150cb8 267ce7a 5772ef9 24ec802 31ae6cb b2ab0e6 784a279 b2ab0e6 1af9ff5 7150cb8 0ac8243 7150cb8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 |
import requests
import streamlit as st
import streamlit.components.v1 as components
def semanticComparativeClassification():
API_URL = "https://api-inference.huggingface.co/models/symanto/sn-xlm-roberta-base-snli-mnli-anli-xnli"
headers = {"Authorization": "Bearer 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"}
#API_URL = "https://api-inference.huggingface.co/models/Maite89/Roberta_finetuning_semantic_similarity_stsb_multi_mt"
def query(payload):
response = requests.post(API_URL, headers=headers, json=payload)
return response.json()
sentences = [
"Conoces Lya2",
"He perdido la contraseña",
"Calendario de eventos",
"Cambios dobles",
"Cambios simples",
"Hola me estás saludando",
"Adiós te despides"
]
output = query({
"inputs": {
"wait_for_model" : True,
"source_sentence": st.session_state.mytext,
"sentences": sentences
},
})
index = 0
sentenceindex = -1
max = 0
for i in output:
st.write(sentences[index]," - ",i)
if i<max:
sentenceindex = index
index = index + 1
sentenceindex = i.index(max(i))
st.write("Hablamos de ", str(sentenceindex))
return output
#x = st.slider('Select a value')
#st.write(x, 'squared is', x * x)
st.title('Reconocimiento semántico')
title = st.text_input('Pregunta', 'Hazme una pregunta', on_change=semanticComparativeClassification,key='mytext')
st.write('La pregunta es ', st.session_state.mytext) |