File size: 1,590 Bytes
24ec802
31ae6cb
24ec802
e26b373
 
 
 
 
 
 
 
070c5e5
2c1d0fb
 
 
 
24ec802
784a279
 
 
7150cb8
 
 
24ec802
2c1d0fb
 
 
 
 
 
24ec802
 
7150cb8
 
 
784a279
11b39fc
 
7150cb8
 
 
267ce7a
 
5772ef9
24ec802
 
 
31ae6cb
b2ab0e6
 
784a279
b2ab0e6
1af9ff5
7150cb8
0ac8243
7150cb8
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
import requests
import streamlit as st
import streamlit.components.v1 as components

def semanticComparativeClassification(): 
    API_URL = "https://api-inference.huggingface.co/models/symanto/sn-xlm-roberta-base-snli-mnli-anli-xnli"
    headers = {"Authorization": "Bearer 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"}
    #API_URL = "https://api-inference.huggingface.co/models/Maite89/Roberta_finetuning_semantic_similarity_stsb_multi_mt"
   
    def query(payload):
     

    	response = requests.post(API_URL, headers=headers, json=payload)
    	return response.json()
    
    sentences =  [
    			"Conoces Lya2",
    			"He perdido la contraseña",
    			"Calendario de eventos",
    			"Cambios dobles",
                "Cambios simples",
                "Hola me estás saludando",
                "Adiós te despides"
    		]
     	
    output = query({
    	"inputs": {
            "wait_for_model" : True,
    		"source_sentence": st.session_state.mytext,
    		"sentences": sentences
    	},
    })
    index = 0
    sentenceindex = -1
    max = 0
    for i in output:
        st.write(sentences[index]," - ",i) 
        if i<max:
            sentenceindex = index
        index = index + 1

    sentenceindex = i.index(max(i))

    st.write("Hablamos de ", str(sentenceindex)) 
    
    return output


#x = st.slider('Select a value')
#st.write(x, 'squared is', x * x)
 


st.title('Reconocimiento semántico')
title = st.text_input('Pregunta', 'Hazme una pregunta', on_change=semanticComparativeClassification,key='mytext')
st.write('La pregunta es ', st.session_state.mytext)