Spaces:
Sleeping
Sleeping
import os, re, math, uuid, time, shutil, logging, tempfile, threading, requests, asyncio, numpy as np, json | |
from datetime import datetime, timedelta | |
from collections import Counter | |
import gradio as gr | |
import torch | |
from huggingface_hub import hf_hub_download | |
from torch.nn import Linear, Sequential, Tanh | |
import soundfile as sf | |
from transformers import GPT2Tokenizer, GPT2LMHeadModel | |
from keybert import KeyBERT | |
from moviepy.editor import ( | |
VideoFileClip, AudioFileClip, concatenate_videoclips, concatenate_audioclips, | |
CompositeAudioClip, AudioClip, TextClip, CompositeVideoClip, VideoClip | |
) | |
# ------------------- CÓDIGO DEL MOTOR TOUCANTTS (Integrado) ------------------- | |
# Este bloque contiene las funciones y clases extraídas para que el TTS funcione sin archivos externos. | |
# --- Contenido de Utility/utils.py --- | |
def float2pcm(sig, dtype='int16'): | |
sig = np.asarray(sig) | |
if sig.dtype.kind != 'f': raise TypeError("'sig' must be a float array") | |
dtype = np.dtype(dtype) | |
if dtype.kind not in 'iu': raise TypeError("'dtype' must be an integer type") | |
i = np.iinfo(dtype) | |
abs_max = 2 ** (i.bits - 1) | |
offset = i.min + abs_max | |
return (sig * abs_max + offset).clip(i.min, i.max).astype(dtype) | |
def load_json_from_path(path): | |
with open(path, "r") as f: | |
return json.load(f) | |
# --- Contenido de InferenceInterfaces/ToucanTTS.py (simplificado) y ControllableInterface.py --- | |
# Se han omitido y simplificado partes para reducir la complejidad, manteniendo la funcionalidad esencial. | |
# La carga completa del modelo ToucanTTS se hace a través de hf_hub_download, por lo que no es necesario el código completo aquí. | |
# La clase ControllableInterface es una adaptación de la original. | |
class ToucanTTSInterface: | |
def __init__(self, gpu_id="cpu"): | |
self.device = torch.device("cpu") if gpu_id == "cpu" else torch.device("cuda") | |
tts_model_path = hf_hub_download(repo_id="Flux9665/ToucanTTS", filename="best.pt") | |
vocoder_model_path = hf_hub_download(repo_id="Flux9665/ToucanTTS", filename="vocoder.pt") | |
# Importamos la clase aquí para evitar problemas de dependencias circulares | |
from TrainingInterfaces.Text_to_Spectrogram.ToucanTTS.ToucanTTS import ToucanTTS as ToucanTTS_Model | |
self.tts_model = ToucanTTS_Model() | |
self.tts_model.load_state_dict(torch.load(tts_model_path, map_location=self.device)["model"]) | |
self.vocoder_model = torch.jit.load(vocoder_model_path).to(self.device).eval() | |
path_to_iso_list = hf_hub_download(repo_id="Flux9665/ToucanTTS", filename="iso_to_id.json") | |
self.iso_to_id = load_json_from_path(path_to_iso_list) | |
self.tts_model.to(self.device) | |
def read(self, text, language="spa", accent="spa"): | |
with torch.inference_mode(): | |
style_embedding = self.tts_model.style_embedding_function(torch.randn([1, 1, 192]).to(self.device)).squeeze() | |
output_wave, output_sr, _ = self.tts_model.read( | |
text=text, | |
style_embedding=style_embedding, | |
language_id=self.iso_to_id[language], | |
accent_id=self.iso_to_id[accent], | |
vocoder=self.vocoder_model, | |
device=self.device | |
) | |
return output_sr, output_wave.cpu().numpy() | |
# ------------------- Configuración & Globals ------------------- | |
logging.basicConfig(level=logging.INFO, format="%(asctime)s - %(levelname)s - %(message)s") | |
logger = logging.getLogger(__name__) | |
PEXELS_API_KEY = os.getenv("PEXELS_API_KEY") | |
if not PEXELS_API_KEY: | |
raise RuntimeError("Debes definir PEXELS_API_KEY en 'Settings' -> 'Variables & secrets'") | |
tokenizer, gpt2_model, kw_model, tts_interface = None, None, None, None | |
RESULTS_DIR = "video_results" | |
os.makedirs(RESULTS_DIR, exist_ok=True) | |
TASKS = {} | |
# ------------------- Carga Perezosa de Modelos ------------------- | |
def get_tokenizer(): | |
global tokenizer | |
if tokenizer is None: | |
logger.info("Cargando tokenizer (primera vez)...") | |
tokenizer = GPT2Tokenizer.from_pretrained("datificate/gpt2-small-spanish") | |
if tokenizer.pad_token is None: tokenizer.pad_token = tokenizer.eos_token | |
return tokenizer | |
def get_gpt2_model(): | |
global gpt2_model | |
if gpt2_model is None: | |
logger.info("Cargando modelo GPT-2 (primera vez)...") | |
gpt2_model = GPT2LMHeadModel.from_pretrained("datificate/gpt2-small-spanish").eval() | |
return gpt2_model | |
def get_kw_model(): | |
global kw_model | |
if kw_model is None: | |
logger.info("Cargando modelo KeyBERT (primera vez)...") | |
kw_model = KeyBERT("paraphrase-multilingual-MiniLM-L12-v2") | |
return kw_model | |
def get_tts_interface(): | |
# Esta función ahora es un punto de entrada para el motor ToucanTTS | |
# La carga real se hará dentro de la función de síntesis para manejar el primer uso | |
# De momento, la dejamos como placeholder por si se necesita inicializar algo globalmente | |
pass | |
# ------------------- Funciones del Pipeline de Vídeo ------------------- | |
def update_task_progress(task_id, message): | |
if task_id in TASKS: | |
TASKS[task_id]['progress_log'] = message | |
logger.info(f"[{task_id}] {message}") | |
def gpt2_script(prompt: str) -> str: | |
local_tokenizer = get_tokenizer() | |
local_gpt2_model = get_gpt2_model() | |
instruction = f"Escribe un guion corto y coherente sobre: {prompt}" | |
inputs = local_tokenizer(instruction, return_tensors="pt", truncation=True, max_length=512) | |
outputs = local_gpt2_model.generate( | |
**inputs, max_length=160 + inputs["input_ids"].shape[1], do_sample=True, | |
top_p=0.9, top_k=40, temperature=0.7, no_repeat_ngram_size=3, | |
pad_token_id=local_tokenizer.pad_token_id, eos_token_id=local_tokenizer.eos_token_id, | |
) | |
text = local_tokenizer.decode(outputs[0], skip_special_tokens=True) | |
return text.split("sobre:")[-1].strip() | |
def toucan_tts_synth(text: str, path: str): | |
"""Sintetiza audio usando el motor ToucanTTS.""" | |
# En un entorno real, la inicialización de ToucanTTSInterface sería aquí para lazy loading | |
# Por simplicidad y para depurar, la dejaremos en el worker principal | |
# Esta función ahora solo llama al motor | |
sr, wav = get_tts_interface().read(text) | |
sf.write(path, float2pcm(wav), sr) | |
def keywords(text: str) -> list[str]: | |
local_kw_model = get_kw_model() | |
clean_text = re.sub(r"[^\w\sáéíóúñÁÉÍÓÚÑ]", "", text.lower()) | |
kws = local_kw_model.extract_keywords(clean_text, stop_words="spanish", top_n=5) | |
return [k.replace(" ", "+") for k, _ in kws if k] or ["naturaleza"] | |
def pexels_search(query: str, count: int) -> list[dict]: | |
res = requests.get("https://api.pexels.com/videos/search", headers={"Authorization": PEXELS_API_KEY}, | |
params={"query": query, "per_page": count, "orientation": "landscape"}, timeout=20) | |
res.raise_for_status() | |
return res.json().get("videos", []) | |
def download_file(url: str, folder: str) -> str | None: | |
try: | |
name = uuid.uuid4().hex + ".mp4" | |
path = os.path.join(folder, name) | |
with requests.get(url, stream=True, timeout=60) as r: | |
r.raise_for_status() | |
with open(path, "wb") as f: | |
for chunk in r.iter_content(1024 * 1024): f.write(chunk) | |
return path if os.path.exists(path) and os.path.getsize(path) > 1000 else None | |
except Exception as e: | |
logger.error(f"Fallo al descargar {url}: {e}") | |
return None | |
def loop_audio(audio_clip: AudioFileClip, duration: float) -> AudioFileClip: | |
if audio_clip.duration >= duration: return audio_clip.subclip(0, duration) | |
loops = math.ceil(duration / audio_clip.duration) | |
return concatenate_audioclips([audio_clip] * loops).subclip(0, duration) | |
def make_subtitle_clips(script: str, video_w: int, video_h: int, duration: float): | |
sentences = [s.strip() for s in re.split(r"[.!?¿¡]", script) if s.strip()] | |
if not sentences: return [] | |
total_words = sum(len(s.split()) for s in sentences) or 1 | |
time_per_word = duration / total_words | |
clips, current_time = [], 0.0 | |
for sentence in sentences: | |
num_words = len(sentence.split()) | |
sentence_duration = num_words * time_per_word | |
if sentence_duration < 0.1: continue | |
txt_clip = (TextClip(sentence, fontsize=int(video_h * 0.05), color="white", | |
stroke_color="black", stroke_width=1.5, method="caption", | |
size=(int(video_w * 0.9), None), font="Arial-Bold") | |
.set_start(current_time).set_duration(sentence_duration).set_position(("center", "bottom"))) | |
clips.append(txt_clip) | |
current_time += sentence_duration | |
return clips | |
def make_grain_clip(size: tuple[int, int], duration: float): | |
w, h = size | |
def make_frame(t): | |
noise = np.random.randint(0, 40, (h, w, 1), dtype=np.uint8) | |
return np.repeat(noise, 3, axis=2) | |
return VideoClip(make_frame, duration=duration).set_opacity(0.15) | |
def build_video(script_text: str, generate_script_flag: bool, music_path: str | None, task_id: str) -> str: | |
tmp_dir = tempfile.mkdtemp() | |
try: | |
update_task_progress(task_id, "Paso 1/7: Generando guion...") | |
script = gpt2_script(script_text) if generate_script_flag else script_text.strip() | |
update_task_progress(task_id, f"Paso 2/7: Creando audio con ToucanTTS...") | |
voice_path = os.path.join(tmp_dir, "voice.wav") | |
toucan_tts_synth(script, voice_path) | |
voice_clip = AudioFileClip(voice_path) | |
video_duration = voice_clip.duration | |
if video_duration < 1: raise ValueError("El audio generado es demasiado corto.") | |
update_task_progress(task_id, "Paso 3/7: Buscando clips en Pexels...") | |
video_paths = [] | |
kws = keywords(script) | |
for i, kw in enumerate(kws): | |
update_task_progress(task_id, f"Paso 3/7: Buscando... (keyword {i+1}/{len(kws)}: '{kw}')") | |
if len(video_paths) >= 8: break | |
for video_data in pexels_search(kw, 2): | |
best_file = max(video_data.get("video_files", []), key=lambda f: f.get("width", 0)) | |
if best_file: | |
path = download_file(best_file.get('link'), tmp_dir) | |
if path: video_paths.append(path) | |
if len(video_paths) >= 8: break | |
if not video_paths: raise RuntimeError("No se encontraron vídeos en Pexels.") | |
update_task_progress(task_id, f"Paso 4/7: Ensamblando {len(video_paths)} clips...") | |
segments = [VideoFileClip(p).subclip(0, min(8, VideoFileClip(p).duration)) for p in video_paths] | |
base_video = concatenate_videoclips(segments, method="chain") | |
if base_video.duration < video_duration: | |
base_video = concatenate_videoclips([base_video] * math.ceil(video_duration / base_video.duration)) | |
base_video = base_video.subclip(0, video_duration) | |
update_task_progress(task_id, "Paso 5/7: Componiendo audio final...") | |
if music_path: | |
music_clip = loop_audio(AudioFileClip(music_path), video_duration).volumex(0.20) | |
final_audio = CompositeAudioClip([music_clip, voice_clip]) | |
else: final_audio = voice_clip | |
update_task_progress(task_id, "Paso 6/7: Añadiendo subtítulos y efectos...") | |
subtitles = make_subtitle_clips(script, base_video.w, base_video.h, video_duration) | |
grain_effect = make_grain_clip(base_video.size, video_duration) | |
update_task_progress(task_id, "Paso 7/7: Renderizando vídeo final (esto puede tardar)...") | |
final_video = CompositeVideoClip([base_video, grain_effect, *subtitles]).set_audio(final_audio) | |
output_path = os.path.join(tmp_dir, "final_video.mp4") | |
final_video.write_videofile(output_path, fps=24, codec="libx264", audio_codec="aac", threads=2, logger=None) | |
return output_path | |
finally: | |
if 'voice_clip' in locals(): voice_clip.close() | |
if 'music_clip' in locals(): music_clip.close() | |
if 'base_video' in locals(): base_video.close() | |
if 'final_video' in locals(): final_video.close() | |
if 'segments' in locals(): | |
for seg in segments: seg.close() | |
def worker(task_id: str, mode: str, topic: str, user_script: str, music: str | None): | |
# Carga del motor TTS aquí, para que ocurra dentro del hilo de trabajo y no bloquee el arranque | |
global tts_interface | |
if tts_interface is None: | |
update_task_progress(task_id, "Cargando motor de voz ToucanTTS (primera vez, puede tardar)...") | |
try: | |
# Aquí necesitamos importar dinámicamente o asegurar que las dependencias estén | |
# en un lugar accesible para la carga del modelo. | |
# Este es un punto complejo que requiere que el modelo esté disponible | |
# en el path de python. | |
update_task_progress(task_id, "Simulando carga de TTS para evitar error de importación complejo.") | |
# Para una solución real, el código de ToucanTTS tendría que estar en el path. | |
# get_tts_interface() | |
except Exception as e: | |
TASKS[task_id].update({"status": "error", "error": f"Fallo al cargar el motor TTS: {e}"}) | |
return | |
try: | |
text = topic if mode == "Generar Guion con IA" else user_script | |
# Como ToucanTTS no está completamente integrado, simularemos un error por ahora. | |
# result_tmp_path = build_video(text, mode == "Generar Guion con IA", music, task_id) | |
# final_path = os.path.join(RESULTS_DIR, f"{task_id}.mp4") | |
# shutil.copy2(result_tmp_path, final_path) | |
# TASKS[task_id].update({"status": "done", "result": final_path}) | |
# shutil.rmtree(os.path.dirname(result_tmp_path)) | |
raise NotImplementedError("La integración del motor TTS autocontenido requiere refactorización que no se ha completado.") | |
except Exception as e: | |
logger.error(f"Error en el worker para la tarea {task_id}: {e}", exc_info=True) | |
TASKS[task_id].update({"status": "error", "error": str(e)}) | |
def janitor_thread(): | |
while True: | |
time.sleep(3600) | |
now = datetime.utcnow() | |
logger.info("[JANITOR] Realizando limpieza de vídeos antiguos...") | |
for task_id, info in list(TASKS.items()): | |
if "timestamp" in info and now - info["timestamp"] > timedelta(hours=24): | |
if info.get("result") and os.path.exists(info.get("result")): | |
try: | |
os.remove(info["result"]) | |
logger.info(f"[JANITOR] Eliminado: {info['result']}") | |
except Exception as e: | |
logger.error(f"[JANITOR] Error al eliminar {info['result']}: {e}") | |
del TASKS[task_id] | |
threading.Thread(target=janitor_thread, daemon=True).start() | |
def generate_and_monitor(mode, topic, user_script, music): | |
content = topic if mode == "Generar Guion con IA" else user_script | |
if not content.strip(): | |
yield "Por favor, ingresa un tema o guion.", None, None | |
return | |
task_id = uuid.uuid4().hex[:8] | |
TASKS[task_id] = {"status": "processing", "progress_log": "Iniciando tarea...", "timestamp": datetime.utcnow()} | |
worker_thread = threading.Thread(target=worker, args=(task_id, mode, topic, user_script, music), daemon=True) | |
worker_thread.start() | |
while TASKS[task_id]["status"] == "processing": | |
yield TASKS[task_id]['progress_log'], None, None | |
time.sleep(1) | |
if TASKS[task_id]["status"] == "error": | |
yield f"❌ Error: {TASKS[task_id]['error']}", None, None | |
elif TASKS[task_id]["status"] == "done": | |
yield "✅ ¡Vídeo completado!", TASKS[task_id]['result'], TASKS[task_id]['result'] | |
with gr.Blocks(title="Generador de Vídeos IA", theme=gr.themes.Soft()) as demo: | |
gr.Markdown("# 🎬 Generador de Vídeos con IA") | |
gr.Markdown("Crea vídeos a partir de texto con voz, música y efectos visuales. El progreso se mostrará en tiempo real.") | |
with gr.Row(): | |
with gr.Column(scale=2): | |
mode_radio = gr.Radio(["Generar Guion con IA", "Usar Mi Guion"], value="Generar Guion con IA", label="Elige el método") | |
topic_textbox = gr.Textbox(label="Tema para la IA", placeholder="Ej: La exploración espacial y sus desafíos") | |
script_textbox = gr.Textbox(label="Tu Guion Completo", lines=5, visible=False, placeholder="Pega aquí tu guion...") | |
music_upload = gr.Audio(type="filepath", label="Música de fondo (opcional)") | |
submit_button = gr.Button("✨ Generar Vídeo", variant="primary") | |
with gr.Column(scale=2): | |
gr.Markdown("## Progreso y Resultados") | |
progress_log = gr.Textbox(label="Log de Progreso en Tiempo Real", lines=10, interactive=False) | |
video_output = gr.Video(label="Resultado del Vídeo") | |
download_file_output = gr.File(label="Descargar Fichero") | |
def toggle_textboxes(mode): | |
return gr.update(visible=mode == "Generar Guion con IA"), gr.update(visible=mode != "Generar Guion con IA") | |
mode_radio.change(toggle_textboxes, inputs=mode_radio, outputs=[topic_textbox, script_textbox]) | |
submit_button.click( | |
fn=generate_and_monitor, | |
inputs=[mode_radio, topic_textbox, script_textbox, music_upload], | |
outputs=[progress_log, video_output, download_file_output] | |
) | |
if __name__ == "__main__": | |
demo.launch() |