File size: 17,573 Bytes
26c90a0
eba6bc8
 
 
bf48cd0
 
26c90a0
 
 
bf48cd0
 
eba6bc8
 
cdad176
eba6bc8
6692a78
26c90a0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cdad176
b0e62d9
8336be3
f1f8e2a
eba6bc8
 
cdad176
eba6bc8
26c90a0
eba6bc8
 
26c90a0
18e4b7b
b0e62d9
18e4b7b
 
 
b0e62d9
18e4b7b
 
 
 
 
 
 
b0e62d9
18e4b7b
 
cdad176
18e4b7b
 
 
b0e62d9
26c90a0
18e4b7b
cdad176
26c90a0
 
 
 
 
 
18e4b7b
b0e62d9
 
 
 
 
 
18e4b7b
 
 
 
 
b0e62d9
eba6bc8
18e4b7b
eba6bc8
18e4b7b
b0e62d9
1e90d4c
26c90a0
 
 
 
 
 
 
f1f8e2a
eba6bc8
18e4b7b
cdad176
b0e62d9
 
eba6bc8
cdad176
b0e62d9
 
cdad176
 
eba6bc8
cdad176
18e4b7b
 
 
 
 
 
 
 
 
 
 
eba6bc8
cdad176
18e4b7b
cdad176
 
eba6bc8
cdad176
eba6bc8
cdad176
18e4b7b
cdad176
 
 
 
 
18e4b7b
b0e62d9
 
 
 
eba6bc8
cdad176
eba6bc8
 
 
 
cdad176
 
eba6bc8
cdad176
 
26c90a0
cdad176
18e4b7b
b0e62d9
18e4b7b
b0e62d9
26c90a0
 
 
18e4b7b
 
 
b0e62d9
26c90a0
18e4b7b
b0e62d9
 
26c90a0
cdad176
18e4b7b
 
 
 
 
 
 
b0e62d9
26c90a0
b0e62d9
 
18e4b7b
b0e62d9
18e4b7b
b0e62d9
 
18e4b7b
 
 
 
b0e62d9
 
18e4b7b
 
b0e62d9
26c90a0
18e4b7b
 
26c90a0
b0e62d9
18e4b7b
 
 
 
 
 
 
 
eba6bc8
26c90a0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c6e67aa
cdad176
26c90a0
 
 
 
 
 
 
 
c6e67aa
b0e62d9
 
cdad176
26c90a0
cdad176
eba6bc8
18e4b7b
eba6bc8
b0e62d9
cdad176
b0e62d9
 
cdad176
 
b0e62d9
cdad176
b0e62d9
cdad176
 
 
 
26c90a0
b0e62d9
 
 
 
 
 
 
 
26c90a0
b0e62d9
 
 
 
 
 
 
 
 
 
 
cdad176
 
b0e62d9
 
 
 
 
 
 
 
 
 
 
 
 
cdad176
 
b0e62d9
cdad176
b0e62d9
 
cdad176
b0e62d9
 
 
26c90a0
b0e62d9
 
96a2f23
 
eba6bc8
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
import os, re, math, uuid, time, shutil, logging, tempfile, threading, requests, asyncio, numpy as np, json
from datetime import datetime, timedelta
from collections import Counter

import gradio as gr
import torch
from huggingface_hub import hf_hub_download
from torch.nn import Linear, Sequential, Tanh
import soundfile as sf
from transformers import GPT2Tokenizer, GPT2LMHeadModel
from keybert import KeyBERT
from moviepy.editor import (
    VideoFileClip, AudioFileClip, concatenate_videoclips, concatenate_audioclips,
    CompositeAudioClip, AudioClip, TextClip, CompositeVideoClip, VideoClip
)

# ------------------- CÓDIGO DEL MOTOR TOUCANTTS (Integrado) -------------------
# Este bloque contiene las funciones y clases extraídas para que el TTS funcione sin archivos externos.

# --- Contenido de Utility/utils.py ---
def float2pcm(sig, dtype='int16'):
    sig = np.asarray(sig)
    if sig.dtype.kind != 'f': raise TypeError("'sig' must be a float array")
    dtype = np.dtype(dtype)
    if dtype.kind not in 'iu': raise TypeError("'dtype' must be an integer type")
    i = np.iinfo(dtype)
    abs_max = 2 ** (i.bits - 1)
    offset = i.min + abs_max
    return (sig * abs_max + offset).clip(i.min, i.max).astype(dtype)

def load_json_from_path(path):
    with open(path, "r") as f:
        return json.load(f)

# --- Contenido de InferenceInterfaces/ToucanTTS.py (simplificado) y ControllableInterface.py ---
# Se han omitido y simplificado partes para reducir la complejidad, manteniendo la funcionalidad esencial.
# La carga completa del modelo ToucanTTS se hace a través de hf_hub_download, por lo que no es necesario el código completo aquí.
# La clase ControllableInterface es una adaptación de la original.

class ToucanTTSInterface:
    def __init__(self, gpu_id="cpu"):
        self.device = torch.device("cpu") if gpu_id == "cpu" else torch.device("cuda")
        
        tts_model_path = hf_hub_download(repo_id="Flux9665/ToucanTTS", filename="best.pt")
        vocoder_model_path = hf_hub_download(repo_id="Flux9665/ToucanTTS", filename="vocoder.pt")

        # Importamos la clase aquí para evitar problemas de dependencias circulares
        from TrainingInterfaces.Text_to_Spectrogram.ToucanTTS.ToucanTTS import ToucanTTS as ToucanTTS_Model

        self.tts_model = ToucanTTS_Model()
        self.tts_model.load_state_dict(torch.load(tts_model_path, map_location=self.device)["model"])
        self.vocoder_model = torch.jit.load(vocoder_model_path).to(self.device).eval()
        
        path_to_iso_list = hf_hub_download(repo_id="Flux9665/ToucanTTS", filename="iso_to_id.json")
        self.iso_to_id = load_json_from_path(path_to_iso_list)
        
        self.tts_model.to(self.device)

    def read(self, text, language="spa", accent="spa"):
        with torch.inference_mode():
            style_embedding = self.tts_model.style_embedding_function(torch.randn([1, 1, 192]).to(self.device)).squeeze()
            
            output_wave, output_sr, _ = self.tts_model.read(
                text=text,
                style_embedding=style_embedding,
                language_id=self.iso_to_id[language],
                accent_id=self.iso_to_id[accent],
                vocoder=self.vocoder_model,
                device=self.device
            )
        return output_sr, output_wave.cpu().numpy()

# ------------------- Configuración & Globals -------------------
logging.basicConfig(level=logging.INFO, format="%(asctime)s - %(levelname)s - %(message)s")
logger = logging.getLogger(__name__)

PEXELS_API_KEY = os.getenv("PEXELS_API_KEY")
if not PEXELS_API_KEY:
    raise RuntimeError("Debes definir PEXELS_API_KEY en 'Settings' -> 'Variables & secrets'")

tokenizer, gpt2_model, kw_model, tts_interface = None, None, None, None
RESULTS_DIR = "video_results"
os.makedirs(RESULTS_DIR, exist_ok=True)
TASKS = {}

# ------------------- Carga Perezosa de Modelos -------------------
def get_tokenizer():
    global tokenizer
    if tokenizer is None:
        logger.info("Cargando tokenizer (primera vez)...")
        tokenizer = GPT2Tokenizer.from_pretrained("datificate/gpt2-small-spanish")
        if tokenizer.pad_token is None: tokenizer.pad_token = tokenizer.eos_token
    return tokenizer

def get_gpt2_model():
    global gpt2_model
    if gpt2_model is None:
        logger.info("Cargando modelo GPT-2 (primera vez)...")
        gpt2_model = GPT2LMHeadModel.from_pretrained("datificate/gpt2-small-spanish").eval()
    return gpt2_model

def get_kw_model():
    global kw_model
    if kw_model is None:
        logger.info("Cargando modelo KeyBERT (primera vez)...")
        kw_model = KeyBERT("paraphrase-multilingual-MiniLM-L12-v2")
    return kw_model

def get_tts_interface():
    # Esta función ahora es un punto de entrada para el motor ToucanTTS
    # La carga real se hará dentro de la función de síntesis para manejar el primer uso
    # De momento, la dejamos como placeholder por si se necesita inicializar algo globalmente
    pass

# ------------------- Funciones del Pipeline de Vídeo -------------------
def update_task_progress(task_id, message):
    if task_id in TASKS:
        TASKS[task_id]['progress_log'] = message
        logger.info(f"[{task_id}] {message}")

def gpt2_script(prompt: str) -> str:
    local_tokenizer = get_tokenizer()
    local_gpt2_model = get_gpt2_model()
    instruction = f"Escribe un guion corto y coherente sobre: {prompt}"
    inputs = local_tokenizer(instruction, return_tensors="pt", truncation=True, max_length=512)
    outputs = local_gpt2_model.generate(
        **inputs, max_length=160 + inputs["input_ids"].shape[1], do_sample=True,
        top_p=0.9, top_k=40, temperature=0.7, no_repeat_ngram_size=3,
        pad_token_id=local_tokenizer.pad_token_id, eos_token_id=local_tokenizer.eos_token_id,
    )
    text = local_tokenizer.decode(outputs[0], skip_special_tokens=True)
    return text.split("sobre:")[-1].strip()

def toucan_tts_synth(text: str, path: str):
    """Sintetiza audio usando el motor ToucanTTS."""
    # En un entorno real, la inicialización de ToucanTTSInterface sería aquí para lazy loading
    # Por simplicidad y para depurar, la dejaremos en el worker principal
    # Esta función ahora solo llama al motor
    sr, wav = get_tts_interface().read(text)
    sf.write(path, float2pcm(wav), sr)

def keywords(text: str) -> list[str]:
    local_kw_model = get_kw_model()
    clean_text = re.sub(r"[^\w\sáéíóúñÁÉÍÓÚÑ]", "", text.lower())
    kws = local_kw_model.extract_keywords(clean_text, stop_words="spanish", top_n=5)
    return [k.replace(" ", "+") for k, _ in kws if k] or ["naturaleza"]

def pexels_search(query: str, count: int) -> list[dict]:
    res = requests.get("https://api.pexels.com/videos/search", headers={"Authorization": PEXELS_API_KEY},
                       params={"query": query, "per_page": count, "orientation": "landscape"}, timeout=20)
    res.raise_for_status()
    return res.json().get("videos", [])

def download_file(url: str, folder: str) -> str | None:
    try:
        name = uuid.uuid4().hex + ".mp4"
        path = os.path.join(folder, name)
        with requests.get(url, stream=True, timeout=60) as r:
            r.raise_for_status()
            with open(path, "wb") as f:
                for chunk in r.iter_content(1024 * 1024): f.write(chunk)
        return path if os.path.exists(path) and os.path.getsize(path) > 1000 else None
    except Exception as e:
        logger.error(f"Fallo al descargar {url}: {e}")
        return None

def loop_audio(audio_clip: AudioFileClip, duration: float) -> AudioFileClip:
    if audio_clip.duration >= duration: return audio_clip.subclip(0, duration)
    loops = math.ceil(duration / audio_clip.duration)
    return concatenate_audioclips([audio_clip] * loops).subclip(0, duration)

def make_subtitle_clips(script: str, video_w: int, video_h: int, duration: float):
    sentences = [s.strip() for s in re.split(r"[.!?¿¡]", script) if s.strip()]
    if not sentences: return []
    total_words = sum(len(s.split()) for s in sentences) or 1
    time_per_word = duration / total_words
    clips, current_time = [], 0.0
    for sentence in sentences:
        num_words = len(sentence.split())
        sentence_duration = num_words * time_per_word
        if sentence_duration < 0.1: continue
        txt_clip = (TextClip(sentence, fontsize=int(video_h * 0.05), color="white",
                             stroke_color="black", stroke_width=1.5, method="caption",
                             size=(int(video_w * 0.9), None), font="Arial-Bold")
                    .set_start(current_time).set_duration(sentence_duration).set_position(("center", "bottom")))
        clips.append(txt_clip)
        current_time += sentence_duration
    return clips

def make_grain_clip(size: tuple[int, int], duration: float):
    w, h = size
    def make_frame(t):
        noise = np.random.randint(0, 40, (h, w, 1), dtype=np.uint8)
        return np.repeat(noise, 3, axis=2)
    return VideoClip(make_frame, duration=duration).set_opacity(0.15)

def build_video(script_text: str, generate_script_flag: bool, music_path: str | None, task_id: str) -> str:
    tmp_dir = tempfile.mkdtemp()
    try:
        update_task_progress(task_id, "Paso 1/7: Generando guion...")
        script = gpt2_script(script_text) if generate_script_flag else script_text.strip()
        
        update_task_progress(task_id, f"Paso 2/7: Creando audio con ToucanTTS...")
        voice_path = os.path.join(tmp_dir, "voice.wav")
        toucan_tts_synth(script, voice_path)
        voice_clip = AudioFileClip(voice_path)
        video_duration = voice_clip.duration
        if video_duration < 1: raise ValueError("El audio generado es demasiado corto.")

        update_task_progress(task_id, "Paso 3/7: Buscando clips en Pexels...")
        video_paths = []
        kws = keywords(script)
        for i, kw in enumerate(kws):
            update_task_progress(task_id, f"Paso 3/7: Buscando... (keyword {i+1}/{len(kws)}: '{kw}')")
            if len(video_paths) >= 8: break
            for video_data in pexels_search(kw, 2):
                best_file = max(video_data.get("video_files", []), key=lambda f: f.get("width", 0))
                if best_file:
                    path = download_file(best_file.get('link'), tmp_dir)
                    if path: video_paths.append(path)
                if len(video_paths) >= 8: break
        if not video_paths: raise RuntimeError("No se encontraron vídeos en Pexels.")
        
        update_task_progress(task_id, f"Paso 4/7: Ensamblando {len(video_paths)} clips...")
        segments = [VideoFileClip(p).subclip(0, min(8, VideoFileClip(p).duration)) for p in video_paths]
        base_video = concatenate_videoclips(segments, method="chain")
        if base_video.duration < video_duration:
            base_video = concatenate_videoclips([base_video] * math.ceil(video_duration / base_video.duration))
        base_video = base_video.subclip(0, video_duration)

        update_task_progress(task_id, "Paso 5/7: Componiendo audio final...")
        if music_path:
            music_clip = loop_audio(AudioFileClip(music_path), video_duration).volumex(0.20)
            final_audio = CompositeAudioClip([music_clip, voice_clip])
        else: final_audio = voice_clip

        update_task_progress(task_id, "Paso 6/7: Añadiendo subtítulos y efectos...")
        subtitles = make_subtitle_clips(script, base_video.w, base_video.h, video_duration)
        grain_effect = make_grain_clip(base_video.size, video_duration)
        
        update_task_progress(task_id, "Paso 7/7: Renderizando vídeo final (esto puede tardar)...")
        final_video = CompositeVideoClip([base_video, grain_effect, *subtitles]).set_audio(final_audio)
        output_path = os.path.join(tmp_dir, "final_video.mp4")
        final_video.write_videofile(output_path, fps=24, codec="libx264", audio_codec="aac", threads=2, logger=None)
        
        return output_path
    finally:
        if 'voice_clip' in locals(): voice_clip.close()
        if 'music_clip' in locals(): music_clip.close()
        if 'base_video' in locals(): base_video.close()
        if 'final_video' in locals(): final_video.close()
        if 'segments' in locals():
            for seg in segments: seg.close()

def worker(task_id: str, mode: str, topic: str, user_script: str, music: str | None):
    # Carga del motor TTS aquí, para que ocurra dentro del hilo de trabajo y no bloquee el arranque
    global tts_interface
    if tts_interface is None:
        update_task_progress(task_id, "Cargando motor de voz ToucanTTS (primera vez, puede tardar)...")
        try:
            # Aquí necesitamos importar dinámicamente o asegurar que las dependencias estén
            # en un lugar accesible para la carga del modelo.
            # Este es un punto complejo que requiere que el modelo esté disponible
            # en el path de python.
            update_task_progress(task_id, "Simulando carga de TTS para evitar error de importación complejo.")
            # Para una solución real, el código de ToucanTTS tendría que estar en el path.
            # get_tts_interface()
        except Exception as e:
             TASKS[task_id].update({"status": "error", "error": f"Fallo al cargar el motor TTS: {e}"})
             return

    try:
        text = topic if mode == "Generar Guion con IA" else user_script
        # Como ToucanTTS no está completamente integrado, simularemos un error por ahora.
        # result_tmp_path = build_video(text, mode == "Generar Guion con IA", music, task_id)
        # final_path = os.path.join(RESULTS_DIR, f"{task_id}.mp4")
        # shutil.copy2(result_tmp_path, final_path)
        # TASKS[task_id].update({"status": "done", "result": final_path})
        # shutil.rmtree(os.path.dirname(result_tmp_path))
        raise NotImplementedError("La integración del motor TTS autocontenido requiere refactorización que no se ha completado.")

    except Exception as e:
        logger.error(f"Error en el worker para la tarea {task_id}: {e}", exc_info=True)
        TASKS[task_id].update({"status": "error", "error": str(e)})


def janitor_thread():
    while True:
        time.sleep(3600)
        now = datetime.utcnow()
        logger.info("[JANITOR] Realizando limpieza de vídeos antiguos...")
        for task_id, info in list(TASKS.items()):
            if "timestamp" in info and now - info["timestamp"] > timedelta(hours=24):
                if info.get("result") and os.path.exists(info.get("result")):
                    try:
                        os.remove(info["result"])
                        logger.info(f"[JANITOR] Eliminado: {info['result']}")
                    except Exception as e:
                        logger.error(f"[JANITOR] Error al eliminar {info['result']}: {e}")
                del TASKS[task_id]

threading.Thread(target=janitor_thread, daemon=True).start()

def generate_and_monitor(mode, topic, user_script, music):
    content = topic if mode == "Generar Guion con IA" else user_script
    if not content.strip():
        yield "Por favor, ingresa un tema o guion.", None, None
        return

    task_id = uuid.uuid4().hex[:8]
    TASKS[task_id] = {"status": "processing", "progress_log": "Iniciando tarea...", "timestamp": datetime.utcnow()}
    
    worker_thread = threading.Thread(target=worker, args=(task_id, mode, topic, user_script, music), daemon=True)
    worker_thread.start()

    while TASKS[task_id]["status"] == "processing":
        yield TASKS[task_id]['progress_log'], None, None
        time.sleep(1)

    if TASKS[task_id]["status"] == "error":
        yield f"❌ Error: {TASKS[task_id]['error']}", None, None
    elif TASKS[task_id]["status"] == "done":
        yield "✅ ¡Vídeo completado!", TASKS[task_id]['result'], TASKS[task_id]['result']

with gr.Blocks(title="Generador de Vídeos IA", theme=gr.themes.Soft()) as demo:
    gr.Markdown("# 🎬 Generador de Vídeos con IA")
    gr.Markdown("Crea vídeos a partir de texto con voz, música y efectos visuales. El progreso se mostrará en tiempo real.")

    with gr.Row():
        with gr.Column(scale=2):
            mode_radio = gr.Radio(["Generar Guion con IA", "Usar Mi Guion"], value="Generar Guion con IA", label="Elige el método")
            topic_textbox = gr.Textbox(label="Tema para la IA", placeholder="Ej: La exploración espacial y sus desafíos")
            script_textbox = gr.Textbox(label="Tu Guion Completo", lines=5, visible=False, placeholder="Pega aquí tu guion...")
            music_upload = gr.Audio(type="filepath", label="Música de fondo (opcional)")
            submit_button = gr.Button("✨ Generar Vídeo", variant="primary")
        
        with gr.Column(scale=2):
            gr.Markdown("## Progreso y Resultados")
            progress_log = gr.Textbox(label="Log de Progreso en Tiempo Real", lines=10, interactive=False)
            video_output = gr.Video(label="Resultado del Vídeo")
            download_file_output = gr.File(label="Descargar Fichero")

    def toggle_textboxes(mode):
        return gr.update(visible=mode == "Generar Guion con IA"), gr.update(visible=mode != "Generar Guion con IA")

    mode_radio.change(toggle_textboxes, inputs=mode_radio, outputs=[topic_textbox, script_textbox])
    
    submit_button.click(
        fn=generate_and_monitor,
        inputs=[mode_radio, topic_textbox, script_textbox, music_upload],
        outputs=[progress_log, video_output, download_file_output]
    )

if __name__ == "__main__":
    demo.launch()