Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -20,52 +20,72 @@ PEXELS_API_KEY = os.getenv("PEXELS_API_KEY")
|
|
20 |
if not PEXELS_API_KEY:
|
21 |
raise RuntimeError("Debes definir PEXELS_API_KEY en 'Settings' -> 'Variables & secrets'")
|
22 |
|
23 |
-
#
|
24 |
-
tokenizer =
|
25 |
-
gpt2_model =
|
26 |
-
|
27 |
-
|
28 |
-
kw_model = KeyBERT("distilbert-base-multilingual-cased")
|
29 |
|
30 |
RESULTS_DIR = "video_results"
|
31 |
os.makedirs(RESULTS_DIR, exist_ok=True)
|
32 |
-
TASKS = {}
|
33 |
|
34 |
-
#
|
35 |
-
|
36 |
-
"""
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
44 |
|
45 |
-
|
|
|
|
|
|
|
|
|
|
|
46 |
|
|
|
47 |
def gpt2_script(prompt: str, max_len: int = 160) -> str:
|
48 |
-
|
49 |
-
|
50 |
-
|
|
|
|
|
51 |
**inputs, max_length=max_len + inputs["input_ids"].shape[1], do_sample=True,
|
52 |
top_p=0.9, top_k=40, temperature=0.7, no_repeat_ngram_size=3,
|
53 |
-
pad_token_id=
|
54 |
)
|
55 |
-
text =
|
56 |
return text.split("sobre:")[-1].strip()[:max_len]
|
57 |
|
58 |
async def edge_tts_synth(text: str, voice: str, path: str):
|
59 |
-
"""Sintetiza audio usando edge-tts de forma asíncrona."""
|
60 |
communicate = edge_tts.Communicate(text, voice)
|
61 |
await communicate.save(path)
|
62 |
|
63 |
def keywords(text: str) -> list[str]:
|
|
|
64 |
clean_text = re.sub(r"[^\w\sáéíóúñÁÉÍÓÚÑ]", "", text.lower())
|
65 |
try:
|
66 |
-
kws =
|
67 |
return [k.replace(" ", "+") for k, _ in kws if k]
|
68 |
-
except Exception:
|
|
|
69 |
words = [w for w in clean_text.split() if len(w) > 4]
|
70 |
return [w for w, _ in Counter(words).most_common(5)] or ["naturaleza"]
|
71 |
|
@@ -80,35 +100,33 @@ def pexels_search(query: str, count: int) -> list[dict]:
|
|
80 |
return res.json().get("videos", [])
|
81 |
|
82 |
def download_file(url: str, folder: str) -> str | None:
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
f.write(chunk)
|
90 |
-
|
|
|
|
|
|
|
91 |
|
92 |
def loop_audio(audio_clip: AudioFileClip, duration: float) -> AudioFileClip:
|
93 |
-
if audio_clip.duration >= duration:
|
94 |
-
return audio_clip.subclip(0, duration)
|
95 |
loops = math.ceil(duration / audio_clip.duration)
|
96 |
return concatenate_audioclips([audio_clip] * loops).subclip(0, duration)
|
97 |
|
98 |
def make_subtitle_clips(script: str, video_w: int, video_h: int, duration: float):
|
99 |
sentences = [s.strip() for s in re.split(r"[.!?¿¡]", script) if s.strip()]
|
100 |
if not sentences: return []
|
101 |
-
|
102 |
-
total_words = sum(len(s.split()) for s in sentences)
|
103 |
-
if total_words == 0: return []
|
104 |
-
|
105 |
time_per_word = duration / total_words
|
106 |
clips, current_time = [], 0.0
|
107 |
-
|
108 |
for sentence in sentences:
|
109 |
num_words = len(sentence.split())
|
110 |
sentence_duration = num_words * time_per_word
|
111 |
-
|
112 |
txt_clip = (
|
113 |
TextClip(sentence, fontsize=int(video_h * 0.05), color="white",
|
114 |
stroke_color="black", stroke_width=1.5, method="caption",
|
@@ -119,7 +137,6 @@ def make_subtitle_clips(script: str, video_w: int, video_h: int, duration: float
|
|
119 |
)
|
120 |
clips.append(txt_clip)
|
121 |
current_time += sentence_duration
|
122 |
-
|
123 |
return clips
|
124 |
|
125 |
def make_grain_clip(size: tuple[int, int], duration: float):
|
@@ -129,109 +146,87 @@ def make_grain_clip(size: tuple[int, int], duration: float):
|
|
129 |
return np.repeat(noise, 3, axis=2)
|
130 |
return VideoClip(make_frame, duration=duration).set_opacity(0.15)
|
131 |
|
132 |
-
# ------------------- Función Principal de Creación de Vídeo -------------------
|
133 |
def build_video(script_text: str, generate_script_flag: bool, voice: str, music_path: str | None) -> str:
|
134 |
tmp_dir = tempfile.mkdtemp()
|
135 |
-
|
136 |
-
|
137 |
-
|
138 |
-
|
139 |
-
|
140 |
-
|
141 |
-
|
142 |
-
|
143 |
-
|
144 |
-
|
145 |
-
# 3. Clips de Pexels
|
146 |
-
video_paths = []
|
147 |
-
for kw in keywords(script):
|
148 |
-
if len(video_paths) >= 8: break
|
149 |
-
for video_data in pexels_search(kw, 2):
|
150 |
-
best_file = max(video_data["video_files"], key=lambda f: f.get("width", 0) * f.get("height", 0))
|
151 |
-
path = download_file(best_file['link'], tmp_dir)
|
152 |
-
if path:
|
153 |
-
video_paths.append(path)
|
154 |
if len(video_paths) >= 8: break
|
155 |
-
|
156 |
-
|
157 |
-
|
158 |
-
|
159 |
-
|
160 |
-
|
161 |
-
if
|
162 |
-
|
163 |
-
|
164 |
-
|
165 |
-
|
166 |
-
|
167 |
-
|
168 |
-
base_video =
|
169 |
-
|
170 |
-
|
171 |
-
|
172 |
-
|
173 |
-
|
174 |
-
|
175 |
-
|
176 |
-
final_audio = voice_clip
|
177 |
-
|
178 |
-
|
179 |
-
|
180 |
-
|
181 |
-
|
182 |
-
|
183 |
-
|
184 |
-
|
185 |
-
|
186 |
-
|
187 |
-
|
|
|
|
|
|
|
188 |
|
189 |
-
# ------------------- Sistema de Tareas Asíncronas y Limpieza -------------------
|
190 |
def worker(task_id: str, mode: str, topic: str, user_script: str, voice: str, music: str | None):
|
191 |
try:
|
192 |
text = topic if mode == "Generar Guion con IA" else user_script
|
193 |
result_tmp_path = build_video(text, mode == "Generar Guion con IA", voice, music)
|
194 |
-
|
195 |
final_path = os.path.join(RESULTS_DIR, f"{task_id}.mp4")
|
196 |
shutil.copy2(result_tmp_path, final_path)
|
197 |
-
|
198 |
TASKS[task_id] = {"status": "done", "result": final_path, "timestamp": datetime.utcnow()}
|
199 |
-
shutil.rmtree(os.path.dirname(result_tmp_path))
|
200 |
except Exception as e:
|
201 |
logger.error(f"Error en la tarea {task_id}: {e}", exc_info=True)
|
202 |
TASKS[task_id] = {"status": "error", "error": str(e), "timestamp": datetime.utcnow()}
|
203 |
|
204 |
def submit_task(mode, topic, user_script, voice, music):
|
205 |
content = topic if mode == "Generar Guion con IA" else user_script
|
206 |
-
if not content.strip():
|
207 |
-
return "", "Por favor, ingresa un tema o guion."
|
208 |
-
|
209 |
task_id = uuid.uuid4().hex[:8]
|
210 |
TASKS[task_id] = {"status": "processing", "timestamp": datetime.utcnow()}
|
211 |
-
|
212 |
threading.Thread(target=worker, args=(task_id, mode, topic, user_script, voice, music), daemon=True).start()
|
213 |
-
|
214 |
return task_id, f"✅ Tarea creada con ID: {task_id}. Comprueba el estado en unos minutos."
|
215 |
|
216 |
def check_task_status(task_id):
|
217 |
-
if not task_id or task_id not in TASKS:
|
218 |
-
return None, None, "ID de tarea no válido o no encontrado."
|
219 |
-
|
220 |
task_info = TASKS[task_id]
|
221 |
status = task_info["status"]
|
222 |
-
|
223 |
-
if status == "
|
224 |
-
|
225 |
-
if status == "error":
|
226 |
-
return None, None, f"❌ Error en la tarea: {task_info['error']}"
|
227 |
-
if status == "done":
|
228 |
-
return task_info["result"], task_info["result"], "✅ ¡Vídeo listo para descargar!"
|
229 |
return None, None, "Estado desconocido."
|
230 |
|
231 |
def janitor_thread():
|
232 |
-
"""Hilo que se ejecuta periódicamente para limpiar vídeos antiguos."""
|
233 |
while True:
|
234 |
-
time.sleep(3600)
|
235 |
now = datetime.utcnow()
|
236 |
for task_id, info in list(TASKS.items()):
|
237 |
if now - info["timestamp"] > timedelta(hours=24):
|
@@ -245,11 +240,9 @@ def janitor_thread():
|
|
245 |
|
246 |
threading.Thread(target=janitor_thread, daemon=True).start()
|
247 |
|
248 |
-
# ------------------- Interfaz de Gradio -------------------
|
249 |
with gr.Blocks(title="Generador de Vídeos IA", theme=gr.themes.Soft()) as demo:
|
250 |
gr.Markdown("# 🎬 Generador de Vídeos con IA")
|
251 |
-
gr.Markdown("Crea vídeos a partir de texto, con voz, música
|
252 |
-
|
253 |
with gr.Tabs():
|
254 |
with gr.TabItem("1. Crear Vídeo"):
|
255 |
with gr.Row():
|
@@ -257,30 +250,25 @@ with gr.Blocks(title="Generador de Vídeos IA", theme=gr.themes.Soft()) as demo:
|
|
257 |
mode_radio = gr.Radio(["Generar Guion con IA", "Usar Mi Guion"], value="Generar Guion con IA", label="Elige el método")
|
258 |
topic_textbox = gr.Textbox(label="Tema para la IA", placeholder="Ej: La historia de la Vía Láctea")
|
259 |
script_textbox = gr.Textbox(label="Tu Guion Completo", lines=5, visible=False, placeholder="Pega aquí tu guion...")
|
260 |
-
voice_dropdown = gr.Dropdown(SPANISH_VOICES, value=SPANISH_VOICES[0]
|
261 |
music_upload = gr.Audio(type="filepath", label="Música de fondo (opcional)")
|
262 |
submit_button = gr.Button("✨ Generar Vídeo", variant="primary")
|
263 |
with gr.Column(scale=1):
|
264 |
task_id_output = gr.Textbox(label="ID de tu Tarea (Guárdalo)", interactive=False)
|
265 |
status_output = gr.Textbox(label="Estado", interactive=False)
|
266 |
gr.Markdown("---")
|
267 |
-
gr.Markdown("### ¿Cómo funciona?\n1. Elige un método y rellena el texto.\n2.
|
268 |
-
|
269 |
with gr.TabItem("2. Revisar Estado"):
|
270 |
gr.Markdown("### Consulta el estado de tu vídeo")
|
271 |
with gr.Row():
|
272 |
task_id_input = gr.Textbox(label="Pega aquí el ID de tu tarea", scale=3)
|
273 |
check_button = gr.Button("🔍 Verificar", scale=1)
|
274 |
-
|
275 |
status_check_output = gr.Textbox(label="Estado Actual", interactive=False)
|
276 |
video_output = gr.Video(label="Resultado del Vídeo")
|
277 |
download_file_output = gr.File(label="Descargar Fichero")
|
278 |
-
|
279 |
-
# Lógica de la interfaz
|
280 |
def toggle_textboxes(mode):
|
281 |
is_ai_mode = mode == "Generar Guion con IA"
|
282 |
return gr.update(visible=is_ai_mode), gr.update(visible=not is_ai_mode)
|
283 |
-
|
284 |
mode_radio.change(toggle_textboxes, inputs=mode_radio, outputs=[topic_textbox, script_textbox])
|
285 |
submit_button.click(submit_task, inputs=[mode_radio, topic_textbox, script_textbox, voice_dropdown, music_upload], outputs=[task_id_output, status_output])
|
286 |
check_button.click(check_task_status, inputs=task_id_input, outputs=[video_output, download_file_output, status_check_output])
|
|
|
20 |
if not PEXELS_API_KEY:
|
21 |
raise RuntimeError("Debes definir PEXELS_API_KEY en 'Settings' -> 'Variables & secrets'")
|
22 |
|
23 |
+
# --- Modelos inicializados como None para Carga Perezosa (Lazy Loading) ---
|
24 |
+
tokenizer = None
|
25 |
+
gpt2_model = None
|
26 |
+
kw_model = None
|
27 |
+
# ---
|
|
|
28 |
|
29 |
RESULTS_DIR = "video_results"
|
30 |
os.makedirs(RESULTS_DIR, exist_ok=True)
|
31 |
+
TASKS = {}
|
32 |
|
33 |
+
# --- Lista de Voces Fija para un Arranque Instantáneo ---
|
34 |
+
SPANISH_VOICES = [
|
35 |
+
"es-ES-ElviraNeural", "es-ES-AlvaroNeural", "es-MX-DaliaNeural", "es-MX-JorgeNeural",
|
36 |
+
"es-AR-ElenaNeural", "es-AR-TomasNeural", "es-CO-SalomeNeural", "es-CO-GonzaloNeural",
|
37 |
+
"es-US-PalomaNeural", "es-US-AlonsoNeural"
|
38 |
+
]
|
39 |
+
|
40 |
+
# ------------------- Funciones para cargar modelos bajo demanda -------------------
|
41 |
+
def get_tokenizer():
|
42 |
+
global tokenizer
|
43 |
+
if tokenizer is None:
|
44 |
+
logger.info("Cargando tokenizer por primera vez...")
|
45 |
+
tokenizer = GPT2Tokenizer.from_pretrained("datificate/gpt2-small-spanish")
|
46 |
+
if tokenizer.pad_token is None: tokenizer.pad_token = tokenizer.eos_token
|
47 |
+
return tokenizer
|
48 |
+
|
49 |
+
def get_gpt2_model():
|
50 |
+
global gpt2_model
|
51 |
+
if gpt2_model is None:
|
52 |
+
logger.info("Cargando modelo GPT-2 por primera vez...")
|
53 |
+
gpt2_model = GPT2LMHeadModel.from_pretrained("datificate/gpt2-small-spanish").eval()
|
54 |
+
return gpt2_model
|
55 |
|
56 |
+
def get_kw_model():
|
57 |
+
global kw_model
|
58 |
+
if kw_model is None:
|
59 |
+
logger.info("Cargando modelo KeyBERT por primera vez...")
|
60 |
+
kw_model = KeyBERT("distilbert-base-multilingual-cased")
|
61 |
+
return kw_model
|
62 |
|
63 |
+
# ------------------- Funciones del Pipeline de Vídeo -------------------
|
64 |
def gpt2_script(prompt: str, max_len: int = 160) -> str:
|
65 |
+
local_tokenizer = get_tokenizer()
|
66 |
+
local_gpt2_model = get_gpt2_model()
|
67 |
+
instruction = f"Escribe un guion corto y coherente sobre: {prompt}"
|
68 |
+
inputs = local_tokenizer(instruction, return_tensors="pt", truncation=True, max_length=512)
|
69 |
+
outputs = local_gpt2_model.generate(
|
70 |
**inputs, max_length=max_len + inputs["input_ids"].shape[1], do_sample=True,
|
71 |
top_p=0.9, top_k=40, temperature=0.7, no_repeat_ngram_size=3,
|
72 |
+
pad_token_id=local_tokenizer.pad_token_id, eos_token_id=local_tokenizer.eos_token_id,
|
73 |
)
|
74 |
+
text = local_tokenizer.decode(outputs[0], skip_special_tokens=True)
|
75 |
return text.split("sobre:")[-1].strip()[:max_len]
|
76 |
|
77 |
async def edge_tts_synth(text: str, voice: str, path: str):
|
|
|
78 |
communicate = edge_tts.Communicate(text, voice)
|
79 |
await communicate.save(path)
|
80 |
|
81 |
def keywords(text: str) -> list[str]:
|
82 |
+
local_kw_model = get_kw_model()
|
83 |
clean_text = re.sub(r"[^\w\sáéíóúñÁÉÍÓÚÑ]", "", text.lower())
|
84 |
try:
|
85 |
+
kws = local_kw_model.extract_keywords(clean_text, stop_words="spanish", top_n=5)
|
86 |
return [k.replace(" ", "+") for k, _ in kws if k]
|
87 |
+
except Exception as e:
|
88 |
+
logger.warning(f"KeyBERT falló, usando método simple. Error: {e}")
|
89 |
words = [w for w in clean_text.split() if len(w) > 4]
|
90 |
return [w for w, _ in Counter(words).most_common(5)] or ["naturaleza"]
|
91 |
|
|
|
100 |
return res.json().get("videos", [])
|
101 |
|
102 |
def download_file(url: str, folder: str) -> str | None:
|
103 |
+
try:
|
104 |
+
name = uuid.uuid4().hex + ".mp4"
|
105 |
+
path = os.path.join(folder, name)
|
106 |
+
with requests.get(url, stream=True, timeout=60) as r:
|
107 |
+
r.raise_for_status()
|
108 |
+
with open(path, "wb") as f:
|
109 |
+
for chunk in r.iter_content(1024 * 1024): f.write(chunk)
|
110 |
+
return path if os.path.exists(path) and os.path.getsize(path) > 1000 else None
|
111 |
+
except Exception as e:
|
112 |
+
logger.error(f"Fallo al descargar {url}: {e}")
|
113 |
+
return None
|
114 |
|
115 |
def loop_audio(audio_clip: AudioFileClip, duration: float) -> AudioFileClip:
|
116 |
+
if audio_clip.duration >= duration: return audio_clip.subclip(0, duration)
|
|
|
117 |
loops = math.ceil(duration / audio_clip.duration)
|
118 |
return concatenate_audioclips([audio_clip] * loops).subclip(0, duration)
|
119 |
|
120 |
def make_subtitle_clips(script: str, video_w: int, video_h: int, duration: float):
|
121 |
sentences = [s.strip() for s in re.split(r"[.!?¿¡]", script) if s.strip()]
|
122 |
if not sentences: return []
|
123 |
+
total_words = sum(len(s.split()) for s in sentences) or 1
|
|
|
|
|
|
|
124 |
time_per_word = duration / total_words
|
125 |
clips, current_time = [], 0.0
|
|
|
126 |
for sentence in sentences:
|
127 |
num_words = len(sentence.split())
|
128 |
sentence_duration = num_words * time_per_word
|
129 |
+
if sentence_duration < 0.1: continue
|
130 |
txt_clip = (
|
131 |
TextClip(sentence, fontsize=int(video_h * 0.05), color="white",
|
132 |
stroke_color="black", stroke_width=1.5, method="caption",
|
|
|
137 |
)
|
138 |
clips.append(txt_clip)
|
139 |
current_time += sentence_duration
|
|
|
140 |
return clips
|
141 |
|
142 |
def make_grain_clip(size: tuple[int, int], duration: float):
|
|
|
146 |
return np.repeat(noise, 3, axis=2)
|
147 |
return VideoClip(make_frame, duration=duration).set_opacity(0.15)
|
148 |
|
|
|
149 |
def build_video(script_text: str, generate_script_flag: bool, voice: str, music_path: str | None) -> str:
|
150 |
tmp_dir = tempfile.mkdtemp()
|
151 |
+
try:
|
152 |
+
script = gpt2_script(script_text) if generate_script_flag else script_text.strip()
|
153 |
+
voice_path = os.path.join(tmp_dir, "voice.mp3")
|
154 |
+
asyncio.run(edge_tts_synth(script, voice, voice_path))
|
155 |
+
voice_clip = AudioFileClip(voice_path)
|
156 |
+
video_duration = voice_clip.duration
|
157 |
+
if video_duration < 1: raise ValueError("El audio generado es demasiado corto.")
|
158 |
+
video_paths = []
|
159 |
+
for kw in keywords(script):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
160 |
if len(video_paths) >= 8: break
|
161 |
+
for video_data in pexels_search(kw, 2):
|
162 |
+
best_file = max(video_data.get("video_files", []), key=lambda f: f.get("width", 0))
|
163 |
+
if best_file:
|
164 |
+
path = download_file(best_file.get('link'), tmp_dir)
|
165 |
+
if path: video_paths.append(path)
|
166 |
+
if len(video_paths) >= 8: break
|
167 |
+
if not video_paths: raise RuntimeError("No se encontraron vídeos en Pexels.")
|
168 |
+
segments = []
|
169 |
+
for path in video_paths:
|
170 |
+
try: segments.append(VideoFileClip(path))
|
171 |
+
except Exception as e: logger.warning(f"No se pudo cargar el clip {path}: {e}")
|
172 |
+
if not segments: raise RuntimeError("Los clips descargados no son válidos.")
|
173 |
+
final_segments = [s.subclip(0, min(8, s.duration)) for s in segments]
|
174 |
+
base_video = concatenate_videoclips(final_segments, method="chain")
|
175 |
+
if base_video.duration < video_duration:
|
176 |
+
num_loops = math.ceil(video_duration / base_video.duration)
|
177 |
+
base_video = concatenate_videoclips([base_video] * num_loops, method="chain")
|
178 |
+
base_video = base_video.subclip(0, video_duration)
|
179 |
+
if music_path:
|
180 |
+
music_clip = loop_audio(AudioFileClip(music_path), video_duration).volumex(0.20)
|
181 |
+
final_audio = CompositeAudioClip([music_clip, voice_clip])
|
182 |
+
else: final_audio = voice_clip
|
183 |
+
subtitles = make_subtitle_clips(script, base_video.w, base_video.h, video_duration)
|
184 |
+
grain_effect = make_grain_clip(base_video.size, video_duration)
|
185 |
+
final_video = CompositeVideoClip([base_video, grain_effect, *subtitles]).set_audio(final_audio)
|
186 |
+
output_path = os.path.join(tmp_dir, "final_video.mp4")
|
187 |
+
final_video.write_videofile(output_path, fps=24, codec="libx264", audio_codec="aac", threads=2, logger=None)
|
188 |
+
return output_path
|
189 |
+
finally:
|
190 |
+
# Intenta cerrar todos los clips de MoviePy para liberar memoria
|
191 |
+
if 'voice_clip' in locals(): voice_clip.close()
|
192 |
+
if 'music_clip' in locals(): music_clip.close()
|
193 |
+
if 'base_video' in locals(): base_video.close()
|
194 |
+
if 'final_video' in locals(): final_video.close()
|
195 |
+
if 'segments' in locals():
|
196 |
+
for seg in segments: seg.close()
|
197 |
|
|
|
198 |
def worker(task_id: str, mode: str, topic: str, user_script: str, voice: str, music: str | None):
|
199 |
try:
|
200 |
text = topic if mode == "Generar Guion con IA" else user_script
|
201 |
result_tmp_path = build_video(text, mode == "Generar Guion con IA", voice, music)
|
|
|
202 |
final_path = os.path.join(RESULTS_DIR, f"{task_id}.mp4")
|
203 |
shutil.copy2(result_tmp_path, final_path)
|
|
|
204 |
TASKS[task_id] = {"status": "done", "result": final_path, "timestamp": datetime.utcnow()}
|
205 |
+
shutil.rmtree(os.path.dirname(result_tmp_path))
|
206 |
except Exception as e:
|
207 |
logger.error(f"Error en la tarea {task_id}: {e}", exc_info=True)
|
208 |
TASKS[task_id] = {"status": "error", "error": str(e), "timestamp": datetime.utcnow()}
|
209 |
|
210 |
def submit_task(mode, topic, user_script, voice, music):
|
211 |
content = topic if mode == "Generar Guion con IA" else user_script
|
212 |
+
if not content.strip(): return "", "Por favor, ingresa un tema o guion."
|
|
|
|
|
213 |
task_id = uuid.uuid4().hex[:8]
|
214 |
TASKS[task_id] = {"status": "processing", "timestamp": datetime.utcnow()}
|
|
|
215 |
threading.Thread(target=worker, args=(task_id, mode, topic, user_script, voice, music), daemon=True).start()
|
|
|
216 |
return task_id, f"✅ Tarea creada con ID: {task_id}. Comprueba el estado en unos minutos."
|
217 |
|
218 |
def check_task_status(task_id):
|
219 |
+
if not task_id or task_id not in TASKS: return None, None, "ID de tarea no válido o no encontrado."
|
|
|
|
|
220 |
task_info = TASKS[task_id]
|
221 |
status = task_info["status"]
|
222 |
+
if status == "processing": return None, None, "⏳ La tarea se está procesando..."
|
223 |
+
if status == "error": return None, None, f"❌ Error: {task_info['error']}"
|
224 |
+
if status == "done": return task_info["result"], task_info["result"], "✅ ¡Vídeo listo!"
|
|
|
|
|
|
|
|
|
225 |
return None, None, "Estado desconocido."
|
226 |
|
227 |
def janitor_thread():
|
|
|
228 |
while True:
|
229 |
+
time.sleep(3600)
|
230 |
now = datetime.utcnow()
|
231 |
for task_id, info in list(TASKS.items()):
|
232 |
if now - info["timestamp"] > timedelta(hours=24):
|
|
|
240 |
|
241 |
threading.Thread(target=janitor_thread, daemon=True).start()
|
242 |
|
|
|
243 |
with gr.Blocks(title="Generador de Vídeos IA", theme=gr.themes.Soft()) as demo:
|
244 |
gr.Markdown("# 🎬 Generador de Vídeos con IA")
|
245 |
+
gr.Markdown("Crea vídeos a partir de texto, con voz, música y efectos visuales.")
|
|
|
246 |
with gr.Tabs():
|
247 |
with gr.TabItem("1. Crear Vídeo"):
|
248 |
with gr.Row():
|
|
|
250 |
mode_radio = gr.Radio(["Generar Guion con IA", "Usar Mi Guion"], value="Generar Guion con IA", label="Elige el método")
|
251 |
topic_textbox = gr.Textbox(label="Tema para la IA", placeholder="Ej: La historia de la Vía Láctea")
|
252 |
script_textbox = gr.Textbox(label="Tu Guion Completo", lines=5, visible=False, placeholder="Pega aquí tu guion...")
|
253 |
+
voice_dropdown = gr.Dropdown(SPANISH_VOICES, value=SPANISH_VOICES[0], label="Elige una voz")
|
254 |
music_upload = gr.Audio(type="filepath", label="Música de fondo (opcional)")
|
255 |
submit_button = gr.Button("✨ Generar Vídeo", variant="primary")
|
256 |
with gr.Column(scale=1):
|
257 |
task_id_output = gr.Textbox(label="ID de tu Tarea (Guárdalo)", interactive=False)
|
258 |
status_output = gr.Textbox(label="Estado", interactive=False)
|
259 |
gr.Markdown("---")
|
260 |
+
gr.Markdown("### ¿Cómo funciona?\n1. Elige un método y rellena el texto.\n2. **Copia el ID** que aparecerá.\n3. Ve a la pestaña **'2. Revisar Estado'**.")
|
|
|
261 |
with gr.TabItem("2. Revisar Estado"):
|
262 |
gr.Markdown("### Consulta el estado de tu vídeo")
|
263 |
with gr.Row():
|
264 |
task_id_input = gr.Textbox(label="Pega aquí el ID de tu tarea", scale=3)
|
265 |
check_button = gr.Button("🔍 Verificar", scale=1)
|
|
|
266 |
status_check_output = gr.Textbox(label="Estado Actual", interactive=False)
|
267 |
video_output = gr.Video(label="Resultado del Vídeo")
|
268 |
download_file_output = gr.File(label="Descargar Fichero")
|
|
|
|
|
269 |
def toggle_textboxes(mode):
|
270 |
is_ai_mode = mode == "Generar Guion con IA"
|
271 |
return gr.update(visible=is_ai_mode), gr.update(visible=not is_ai_mode)
|
|
|
272 |
mode_radio.change(toggle_textboxes, inputs=mode_radio, outputs=[topic_textbox, script_textbox])
|
273 |
submit_button.click(submit_task, inputs=[mode_radio, topic_textbox, script_textbox, voice_dropdown, music_upload], outputs=[task_id_output, status_output])
|
274 |
check_button.click(check_task_status, inputs=task_id_input, outputs=[video_output, download_file_output, status_check_output])
|