Spaces:
Running
Running
import gradio as gr | |
from transformers import AutoModelForCausalLM, AutoTokenizer | |
import torch | |
# Load the DeepSeek-R1-Distill-Qwen-1.5B-uncensored model | |
model_id = "thirdeyeai/DeepSeek-R1-Distill-Qwen-1.5B-uncensored" | |
tokenizer = AutoTokenizer.from_pretrained(model_id) | |
model = AutoModelForCausalLM.from_pretrained( | |
model_id, | |
torch_dtype=torch.float16, # Use float16 for efficiency | |
low_cpu_mem_usage=True, | |
device_map="auto" # Automatically use available devices | |
) | |
def generate_text(prompt, max_length=100, temperature=0.7, top_p=0.9): | |
"""Generate text based on prompt""" | |
inputs = tokenizer(prompt, return_tensors="pt").to(model.device) | |
# Generate | |
with torch.no_grad(): | |
generation_output = model.generate( | |
input_ids=inputs.input_ids, | |
attention_mask=inputs.attention_mask, | |
max_length=len(inputs.input_ids[0]) + max_length, | |
temperature=temperature, | |
top_p=top_p, | |
do_sample=True, | |
) | |
# Decode and return only the generated part | |
generated_text = tokenizer.decode(generation_output[0], skip_special_tokens=True) | |
return generated_text | |
# Create Gradio interface | |
demo = gr.Interface( | |
fn=generate_text, | |
inputs=[ | |
gr.Textbox(lines=5, placeholder="Enter your prompt here...", label="Prompt"), | |
gr.Slider(minimum=10, maximum=500, value=100, step=10, label="Max Length"), | |
gr.Slider(minimum=0.1, maximum=2.0, value=0.7, step=0.1, label="Temperature"), | |
gr.Slider(minimum=0.1, maximum=1.0, value=0.9, step=0.05, label="Top-p") | |
], | |
outputs=gr.Textbox(label="Generated Text"), | |
title="DeepSeek-R1-Distill-Qwen-1.5B Demo", | |
description="Enter a prompt to generate text with the DeepSeek-R1-Distill-Qwen-1.5B-uncensored model." | |
) | |
# Launch the app | |
demo.launch() |