import gradio as gr from transformers import AutoModelForCausalLM, AutoTokenizer import torch # Load the DeepSeek-R1-Distill-Qwen-1.5B-uncensored model model_id = "thirdeyeai/DeepSeek-R1-Distill-Qwen-1.5B-uncensored" tokenizer = AutoTokenizer.from_pretrained(model_id) model = AutoModelForCausalLM.from_pretrained( model_id, torch_dtype=torch.float16, # Use float16 for efficiency low_cpu_mem_usage=True, device_map="auto" # Automatically use available devices ) def generate_text(prompt, max_length=100, temperature=0.7, top_p=0.9): """Generate text based on prompt""" inputs = tokenizer(prompt, return_tensors="pt").to(model.device) # Generate with torch.no_grad(): generation_output = model.generate( input_ids=inputs.input_ids, attention_mask=inputs.attention_mask, max_length=len(inputs.input_ids[0]) + max_length, temperature=temperature, top_p=top_p, do_sample=True, ) # Decode and return only the generated part generated_text = tokenizer.decode(generation_output[0], skip_special_tokens=True) return generated_text # Create Gradio interface demo = gr.Interface( fn=generate_text, inputs=[ gr.Textbox(lines=5, placeholder="Enter your prompt here...", label="Prompt"), gr.Slider(minimum=10, maximum=500, value=100, step=10, label="Max Length"), gr.Slider(minimum=0.1, maximum=2.0, value=0.7, step=0.1, label="Temperature"), gr.Slider(minimum=0.1, maximum=1.0, value=0.9, step=0.05, label="Top-p") ], outputs=gr.Textbox(label="Generated Text"), title="DeepSeek-R1-Distill-Qwen-1.5B Demo", description="Enter a prompt to generate text with the DeepSeek-R1-Distill-Qwen-1.5B-uncensored model." ) # Launch the app demo.launch()