werning's picture
Update gradio interface
7255251
raw
history blame
6.57 kB
import numpy as np
from pathlib import Path
import padertorch as pt
import paderbox as pb
import time
import torch
import torchaudio
from onnxruntime import InferenceSession
from pvq_manipulation.models.vits import Vits_NT
from pvq_manipulation.models.ffjord import FFJORD
from IPython.display import display, Audio, clear_output
from pvq_manipulation.models.hubert import HubertExtractor, SID_LARGE_LAYER
import librosa
from pvq_manipulation.helper.vad import EnergyVAD
import gradio as gr
device = 'cpu' #'cuda' if torch.cuda.is_available() else 'cpu'
# load tts model
storage_dir_tts = Path("./models/tts_model/")
tts_model = Vits_NT.load_model(storage_dir_tts, "model.pt")
# load normalizing flow
storage_dir_normalizing_flow = Path("./models/norm_flow")
speaker_conditioning = pb.io.load(storage_dir_normalizing_flow / "speaker_conditioning.json")
normalizing_flow = FFJORD.load_model(storage_dir_normalizing_flow, checkpoint="model.pt", device=device)
# load hubert features model
hubert_model = HubertExtractor(
layer=SID_LARGE_LAYER,
model_name="HUBERT_LARGE",
backend="torchaudio",
device=device,
# storage_dir= # target storage dir hubert model
)
# example synthesis
# speaker_id = 1034
# example_id = "1034_121119_000028_000001"
# wav_1 = tts_model.synthesize_from_example({
# 'text' : "It took me quite a long time to develop a voice, and now that I have it I'm not going to be silent.",
# 'd_vector_storage_root': f"./Saved_models/Dataset/Embeddings/{speaker_id}/{example_id}.pth"
# })
# display(Audio(wav_1, rate=24_000, normalize=True))
# manipulation block
def get_manipulation(
d_vector,
labels,
flow,
tts_model,
manipulation_idx=0,
manipulation_fkt=1,
):
labels_manipulated = labels.clone()
labels_manipulated[:,manipulation_idx] += manipulation_fkt
output_forward = flow.forward((d_vector.float(), labels))[0]
sampled_class_manipulated = flow.sample((output_forward, labels_manipulated))[0]
wav = tts_model.synthesize_from_example({
'text': "It took me quite a long time to develop a voice, and now that I have it I'm not going to be silent.",
'd_vector': d_vector.detach().numpy(),
'd_vector_man': sampled_class_manipulated.detach().numpy(),
})
return wav
def extract_speaker_embedding(example):
observation, sr = pb.io.load_audio(example['audio_path']['observation'], return_sample_rate=True)
observation = librosa.resample(observation, orig_sr=sr, target_sr=16_000)
vad = EnergyVAD(sample_rate=16_000)
if observation.ndim == 1:
observation = observation[None, :]
observation = vad({'audio_data': observation})['audio_data']
with torch.no_grad():
example = tts_model.speaker_manager.prepare_example({'audio_data': {'observation': observation}, **example})
example = pt.data.utils.collate_fn([example])
example['features'] = torch.tensor(np.array(example['features']))
d_vector = tts_model.speaker_manager.forward(example)[0]
return d_vector
# load speaker labels
def load_speaker_labels(example, speaker_conditioning, reg_stor_dir=Path('./models/pvq_extractor/')):
audio, _ = torchaudio.load(example['audio_path']['observation'])
audio = audio.to(device)
num_samples = torch.tensor([audio.shape[-1]], device=device)
providers = ["CPUExecutionProvider"]
with torch.no_grad():
features, seq_len = hubert_model(
audio,
24_000,
sequence_lengths=num_samples,
)
features = np.mean(features.squeeze(0).detach().cpu().numpy(), axis=-1)
pvqd_predictions = {}
for pvq in ['Breathiness', 'Loudness', 'Pitch', 'Resonance', 'Roughness', 'Strain', 'Weight']:
with open(reg_stor_dir / f"{pvq}.onnx", "rb") as fid:
onnx = fid.read()
sess = InferenceSession(onnx, providers=providers)
pred = sess.run(None, {"X": features[None]})[0].squeeze(1)
pvqd_predictions[pvq] = pred.tolist()[0]
labels = []
for key in speaker_conditioning:
labels.append(pvqd_predictions[key]/100)
return torch.tensor(labels)
example = {
'audio_path': {'observation': "audio/1034_121119_000028_000001.wav"},
'speaker_id': 1034,
'example_id': "1034_121119_000028_000001",
}
labels = load_speaker_labels(example, speaker_conditioning)
label_options = ['Weight', 'Resonance', 'Breathiness', 'Roughness', 'Loudness', 'Strain', 'Pitch']
# print('Estimated PVQ strengths of input speaker:')
# max_len = max(len(name) for name in label_options)
# for label_name, pvq in zip(label_options, labels):
# print(f'{label_name:<{max_len}} : {pvq:6.2f}')
def update_manipulation(manipulation_idx, manipulation_fkt):
d_vector = extract_speaker_embedding(example)
labels = load_speaker_labels(example, speaker_conditioning)
wav_manipulated = get_manipulation(
# example=example,
d_vector=d_vector,
labels=labels[None, :],
flow=normalizing_flow,
tts_model=tts_model,
manipulation_idx=manipulation_idx,
manipulation_fkt=manipulation_fkt,
)
wav_unmanipulated = tts_model.synthesize_from_example({
'text': "It took me quite a long time to develop a voice, and now that I have it I'm not going to be silent.",
'd_vector': d_vector.detach().numpy(),
})
sr = 24_000
return (sr, wav_unmanipulated), (sr, wav_manipulated)
# with audio_output:
# clear_output(wait=True)
# print('Manipulated Speaker')
# display(Audio(wav_manipulated, rate=24_000, normalize=True))
# print('Unmanipulated Synthese')
# display(Audio(wav_unmanipulated, rate=24_000, normalize=True))
# print('Original Speaker')
# display(Audio(example['audio_path']['observation'], rate=24_000, normalize=True))
# print(f"Manipulated {label_options[manipulation_idx]} with strength {manipulation_fkt}")
dropdown_options = [(label, i) for i, label in enumerate(label_options)]
demo = gr.Interface(
title="Perceptual Voice Quality (PVQ) Manipulation",
fn=update_manipulation,
inputs=[
gr.Dropdown(label="PVQ Feature", choices=dropdown_options, value=2, type="index"),
gr.Slider(label="Manipulation Factor", minimum=-2.0, maximum=2.0, value=1.0, step=0.1),
],
outputs=[gr.Audio(label="original utterance"), gr.Audio(label="manipulated utterance")],
)
if __name__ == "__main__":
demo.launch(share=True)