Spaces:
Running
Running
File size: 6,567 Bytes
cbdb41f 2352e73 7255251 2352e73 cbdb41f 2352e73 cbdb41f 2352e73 cbdb41f 2352e73 7255251 cbdb41f 7255251 2352e73 7255251 2352e73 cbdb41f 2352e73 cbdb41f 2352e73 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 |
import numpy as np
from pathlib import Path
import padertorch as pt
import paderbox as pb
import time
import torch
import torchaudio
from onnxruntime import InferenceSession
from pvq_manipulation.models.vits import Vits_NT
from pvq_manipulation.models.ffjord import FFJORD
from IPython.display import display, Audio, clear_output
from pvq_manipulation.models.hubert import HubertExtractor, SID_LARGE_LAYER
import librosa
from pvq_manipulation.helper.vad import EnergyVAD
import gradio as gr
device = 'cpu' #'cuda' if torch.cuda.is_available() else 'cpu'
# load tts model
storage_dir_tts = Path("./models/tts_model/")
tts_model = Vits_NT.load_model(storage_dir_tts, "model.pt")
# load normalizing flow
storage_dir_normalizing_flow = Path("./models/norm_flow")
speaker_conditioning = pb.io.load(storage_dir_normalizing_flow / "speaker_conditioning.json")
normalizing_flow = FFJORD.load_model(storage_dir_normalizing_flow, checkpoint="model.pt", device=device)
# load hubert features model
hubert_model = HubertExtractor(
layer=SID_LARGE_LAYER,
model_name="HUBERT_LARGE",
backend="torchaudio",
device=device,
# storage_dir= # target storage dir hubert model
)
# example synthesis
# speaker_id = 1034
# example_id = "1034_121119_000028_000001"
# wav_1 = tts_model.synthesize_from_example({
# 'text' : "It took me quite a long time to develop a voice, and now that I have it I'm not going to be silent.",
# 'd_vector_storage_root': f"./Saved_models/Dataset/Embeddings/{speaker_id}/{example_id}.pth"
# })
# display(Audio(wav_1, rate=24_000, normalize=True))
# manipulation block
def get_manipulation(
d_vector,
labels,
flow,
tts_model,
manipulation_idx=0,
manipulation_fkt=1,
):
labels_manipulated = labels.clone()
labels_manipulated[:,manipulation_idx] += manipulation_fkt
output_forward = flow.forward((d_vector.float(), labels))[0]
sampled_class_manipulated = flow.sample((output_forward, labels_manipulated))[0]
wav = tts_model.synthesize_from_example({
'text': "It took me quite a long time to develop a voice, and now that I have it I'm not going to be silent.",
'd_vector': d_vector.detach().numpy(),
'd_vector_man': sampled_class_manipulated.detach().numpy(),
})
return wav
def extract_speaker_embedding(example):
observation, sr = pb.io.load_audio(example['audio_path']['observation'], return_sample_rate=True)
observation = librosa.resample(observation, orig_sr=sr, target_sr=16_000)
vad = EnergyVAD(sample_rate=16_000)
if observation.ndim == 1:
observation = observation[None, :]
observation = vad({'audio_data': observation})['audio_data']
with torch.no_grad():
example = tts_model.speaker_manager.prepare_example({'audio_data': {'observation': observation}, **example})
example = pt.data.utils.collate_fn([example])
example['features'] = torch.tensor(np.array(example['features']))
d_vector = tts_model.speaker_manager.forward(example)[0]
return d_vector
# load speaker labels
def load_speaker_labels(example, speaker_conditioning, reg_stor_dir=Path('./models/pvq_extractor/')):
audio, _ = torchaudio.load(example['audio_path']['observation'])
audio = audio.to(device)
num_samples = torch.tensor([audio.shape[-1]], device=device)
providers = ["CPUExecutionProvider"]
with torch.no_grad():
features, seq_len = hubert_model(
audio,
24_000,
sequence_lengths=num_samples,
)
features = np.mean(features.squeeze(0).detach().cpu().numpy(), axis=-1)
pvqd_predictions = {}
for pvq in ['Breathiness', 'Loudness', 'Pitch', 'Resonance', 'Roughness', 'Strain', 'Weight']:
with open(reg_stor_dir / f"{pvq}.onnx", "rb") as fid:
onnx = fid.read()
sess = InferenceSession(onnx, providers=providers)
pred = sess.run(None, {"X": features[None]})[0].squeeze(1)
pvqd_predictions[pvq] = pred.tolist()[0]
labels = []
for key in speaker_conditioning:
labels.append(pvqd_predictions[key]/100)
return torch.tensor(labels)
example = {
'audio_path': {'observation': "audio/1034_121119_000028_000001.wav"},
'speaker_id': 1034,
'example_id': "1034_121119_000028_000001",
}
labels = load_speaker_labels(example, speaker_conditioning)
label_options = ['Weight', 'Resonance', 'Breathiness', 'Roughness', 'Loudness', 'Strain', 'Pitch']
# print('Estimated PVQ strengths of input speaker:')
# max_len = max(len(name) for name in label_options)
# for label_name, pvq in zip(label_options, labels):
# print(f'{label_name:<{max_len}} : {pvq:6.2f}')
def update_manipulation(manipulation_idx, manipulation_fkt):
d_vector = extract_speaker_embedding(example)
labels = load_speaker_labels(example, speaker_conditioning)
wav_manipulated = get_manipulation(
# example=example,
d_vector=d_vector,
labels=labels[None, :],
flow=normalizing_flow,
tts_model=tts_model,
manipulation_idx=manipulation_idx,
manipulation_fkt=manipulation_fkt,
)
wav_unmanipulated = tts_model.synthesize_from_example({
'text': "It took me quite a long time to develop a voice, and now that I have it I'm not going to be silent.",
'd_vector': d_vector.detach().numpy(),
})
sr = 24_000
return (sr, wav_unmanipulated), (sr, wav_manipulated)
# with audio_output:
# clear_output(wait=True)
# print('Manipulated Speaker')
# display(Audio(wav_manipulated, rate=24_000, normalize=True))
# print('Unmanipulated Synthese')
# display(Audio(wav_unmanipulated, rate=24_000, normalize=True))
# print('Original Speaker')
# display(Audio(example['audio_path']['observation'], rate=24_000, normalize=True))
# print(f"Manipulated {label_options[manipulation_idx]} with strength {manipulation_fkt}")
dropdown_options = [(label, i) for i, label in enumerate(label_options)]
demo = gr.Interface(
title="Perceptual Voice Quality (PVQ) Manipulation",
fn=update_manipulation,
inputs=[
gr.Dropdown(label="PVQ Feature", choices=dropdown_options, value=2, type="index"),
gr.Slider(label="Manipulation Factor", minimum=-2.0, maximum=2.0, value=1.0, step=0.1),
],
outputs=[gr.Audio(label="original utterance"), gr.Audio(label="manipulated utterance")],
)
if __name__ == "__main__":
demo.launch(share=True)
|