Spaces:
Running
on
Zero
Running
on
Zero
import spaces | |
import torch | |
import os | |
import time | |
import datetime | |
from moviepy.editor import VideoFileClip | |
import gradio as gr | |
# Download Weights | |
from huggingface_hub import snapshot_download | |
# List of subdirectories to create inside "weights" | |
subfolders = [ | |
"diffuEraser", | |
"stable-diffusion-v1-5", | |
"PCM_Weights", | |
"propainter", | |
"sd-vae-ft-mse" | |
] | |
# Create directories | |
for subfolder in subfolders: | |
os.makedirs(os.path.join("weights", subfolder), exist_ok=True) | |
snapshot_download(repo_id="lixiaowen/diffuEraser", local_dir="./weights/diffuEraser") | |
snapshot_download(repo_id="stable-diffusion-v1-5/stable-diffusion-v1-5", local_dir="./weights/stable-diffusion-v1-5") | |
snapshot_download(repo_id="wangfuyun/PCM_Weights", local_dir="./weights/PCM_Weights") | |
snapshot_download(repo_id="camenduru/ProPainter", local_dir="./weights/propainter") | |
snapshot_download(repo_id="stabilityai/sd-vae-ft-mse", local_dir="./weights/sd-vae-ft-mse") | |
# Import model classes | |
from diffueraser.diffueraser import DiffuEraser | |
from propainter.inference import Propainter, get_device | |
base_model_path = "weights/stable-diffusion-v1-5" | |
vae_path = "weights/sd-vae-ft-mse" | |
diffueraser_path = "weights/diffuEraser" | |
propainter_model_dir = "weights/propainter" | |
# Model setup | |
device = get_device() | |
ckpt = "2-Step" | |
video_inpainting_sd = DiffuEraser(device, base_model_path, vae_path, diffueraser_path, ckpt=ckpt) | |
propainter = Propainter(propainter_model_dir, device=device) | |
# Helper function to trim videos | |
def trim_video(input_path, output_path, max_duration=5): | |
clip = VideoFileClip(input_path) | |
trimmed_clip = clip.subclip(0, min(max_duration, clip.duration)) | |
trimmed_clip.write_videofile(output_path, codec="libx264", audio_codec="aac") | |
clip.close() | |
trimmed_clip.close() | |
def infer(input_video, input_mask): | |
# Setup paths and parameters | |
save_path = "results" | |
mask_dilation_iter = 8 | |
max_img_size = 960 | |
ref_stride = 10 | |
neighbor_length = 10 | |
subvideo_length = 50 | |
if not os.path.exists(save_path): | |
os.makedirs(save_path) | |
# Timestamp for unique filenames | |
timestamp = datetime.datetime.now().strftime("%Y%m%d_%H%M%S") | |
trimmed_video_path = os.path.join(save_path, f"trimmed_video_{timestamp}.mp4") | |
trimmed_mask_path = os.path.join(save_path, f"trimmed_mask_{timestamp}.mp4") | |
priori_path = os.path.join(save_path, f"priori_{timestamp}.mp4") | |
output_path = os.path.join(save_path, f"diffueraser_result_{timestamp}.mp4") | |
# Trim input videos | |
trim_video(input_video, trimmed_video_path) | |
trim_video(input_mask, trimmed_mask_path) | |
# Dynamically compute video_length (in frames) assuming 30 fps | |
clip = VideoFileClip(trimmed_video_path) | |
video_duration = clip.duration | |
clip.close() | |
video_length = int(video_duration * 30) | |
# Run models | |
start_time = time.time() | |
# ProPainter (priori) | |
propainter.forward(trimmed_video_path, trimmed_mask_path, priori_path, | |
video_length=video_length, ref_stride=ref_stride, | |
neighbor_length=neighbor_length, subvideo_length=subvideo_length, | |
mask_dilation=mask_dilation_iter) | |
# DiffuEraser | |
guidance_scale = None | |
video_inpainting_sd.forward(trimmed_video_path, trimmed_mask_path, priori_path, output_path, | |
max_img_size=max_img_size, video_length=video_length, | |
mask_dilation_iter=mask_dilation_iter, | |
guidance_scale=guidance_scale) | |
end_time = time.time() | |
print(f"DiffuEraser inference time: {end_time - start_time:.2f} seconds") | |
torch.cuda.empty_cache() | |
return output_path | |
# Gradio interface | |
with gr.Blocks() as demo: | |
with gr.Column(): | |
gr.Markdown("# DiffuEraser: A Diffusion Model for Video Inpainting") | |
gr.Markdown("DiffuEraser is a diffusion model for video inpainting, which outperforms state-of-the-art model ProPainter in both content completeness and temporal consistency while maintaining acceptable efficiency.") | |
gr.HTML(""" | |
<div style="display:flex;column-gap:4px;"> | |
<a href="https://github.com/lixiaowen-xw/DiffuEraser"> | |
<img src='https://img.shields.io/badge/GitHub-Repo-blue'> | |
</a> | |
<a href="https://lixiaowen-xw.github.io/DiffuEraser-page"> | |
<img src='https://img.shields.io/badge/Project-Page-green'> | |
</a> | |
<a href="https://lixiaowen-xw.github.io/DiffuEraser-page"> | |
<img src='https://img.shields.io/badge/ArXiv-Paper-red'> | |
</a> | |
<a href="https://huggingface.co/spaces/fffiloni/DiffuEraser-demo?duplicate=true"> | |
<img src="https://huggingface.co/datasets/huggingface/badges/resolve/main/duplicate-this-space-sm.svg" alt="Duplicate this Space"> | |
</a> | |
</div> | |
""") | |
with gr.Row(): | |
with gr.Column(): | |
input_video = gr.Video(label="Input Video (MP4 ONLY)") | |
input_mask = gr.Video(label="Input Mask Video (MP4 ONLY)") | |
submit_btn = gr.Button("Submit") | |
with gr.Column(): | |
video_result = gr.Video(label="Result") | |
gr.Examples( | |
examples=[ | |
["./examples/example1/video.mp4", "./examples/example1/mask.mp4"], | |
["./examples/example2/video.mp4", "./examples/example2/mask.mp4"], | |
["./examples/example3/video.mp4", "./examples/example3/mask.mp4"], | |
], | |
inputs=[input_video, input_mask] | |
) | |
submit_btn.click(fn=infer, inputs=[input_video, input_mask], outputs=[video_result]) | |
demo.queue().launch(show_api=True, show_error=True, ssr_mode=False) | |