File size: 5,868 Bytes
7b0a8f1
219cab0
ea799b5
219cab0
ea799b5
 
a7703a7
219cab0
 
 
 
ea799b5
219cab0
 
 
 
 
 
 
ea799b5
219cab0
ea799b5
219cab0
ea799b5
 
 
 
 
219cab0
ea799b5
 
 
219cab0
9b77af9
 
 
 
 
 
 
 
 
 
 
ea799b5
 
 
 
 
 
 
219cab0
e0180e9
219cab0
ea799b5
 
 
 
 
219cab0
9b77af9
ea799b5
219cab0
 
ea799b5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
219cab0
ea799b5
 
 
 
 
 
 
 
 
 
 
219cab0
 
ea799b5
 
219cab0
ea799b5
8b634d8
219cab0
ea799b5
219cab0
 
8b634d8
ea799b5
 
8b634d8
 
 
 
ea799b5
8b634d8
 
 
 
 
 
 
 
 
 
 
219cab0
 
 
8b634d8
 
219cab0
 
8b634d8
 
219cab0
ea799b5
3f6eb3e
 
 
219cab0
ea799b5
219cab0
 
ea799b5
219cab0
8194697
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
import spaces
import torch
import os
import time
import datetime
from moviepy.editor import VideoFileClip
import gradio as gr

# Download Weights
from huggingface_hub import snapshot_download

# List of subdirectories to create inside "weights"
subfolders = [
    "diffuEraser",
    "stable-diffusion-v1-5",
    "PCM_Weights",
    "propainter",
    "sd-vae-ft-mse"
]
# Create directories
for subfolder in subfolders:
    os.makedirs(os.path.join("weights", subfolder), exist_ok=True)

snapshot_download(repo_id="lixiaowen/diffuEraser", local_dir="./weights/diffuEraser")
snapshot_download(repo_id="stable-diffusion-v1-5/stable-diffusion-v1-5", local_dir="./weights/stable-diffusion-v1-5")
snapshot_download(repo_id="wangfuyun/PCM_Weights", local_dir="./weights/PCM_Weights")
snapshot_download(repo_id="camenduru/ProPainter", local_dir="./weights/propainter")
snapshot_download(repo_id="stabilityai/sd-vae-ft-mse", local_dir="./weights/sd-vae-ft-mse")

# Import model classes
from diffueraser.diffueraser import DiffuEraser
from propainter.inference import Propainter, get_device

base_model_path = "weights/stable-diffusion-v1-5"
vae_path = "weights/sd-vae-ft-mse"
diffueraser_path = "weights/diffuEraser"
propainter_model_dir = "weights/propainter"

# Model setup
device = get_device()
ckpt = "2-Step"
video_inpainting_sd = DiffuEraser(device, base_model_path, vae_path, diffueraser_path, ckpt=ckpt)
propainter = Propainter(propainter_model_dir, device=device)

# Helper function to trim videos
def trim_video(input_path, output_path, max_duration=5):
    clip = VideoFileClip(input_path)
    trimmed_clip = clip.subclip(0, min(max_duration, clip.duration))
    trimmed_clip.write_videofile(output_path, codec="libx264", audio_codec="aac")
    clip.close()
    trimmed_clip.close()

@spaces.GPU(duration=100)
def infer(input_video, input_mask):
    # Setup paths and parameters
    save_path = "results"
    mask_dilation_iter = 8
    max_img_size = 960
    ref_stride = 10
    neighbor_length = 10
    subvideo_length = 50 

    if not os.path.exists(save_path):
        os.makedirs(save_path)

    # Timestamp for unique filenames
    timestamp = datetime.datetime.now().strftime("%Y%m%d_%H%M%S")
    trimmed_video_path = os.path.join(save_path, f"trimmed_video_{timestamp}.mp4")
    trimmed_mask_path = os.path.join(save_path, f"trimmed_mask_{timestamp}.mp4")
    priori_path = os.path.join(save_path, f"priori_{timestamp}.mp4")
    output_path = os.path.join(save_path, f"diffueraser_result_{timestamp}.mp4")

    # Trim input videos
    trim_video(input_video, trimmed_video_path)
    trim_video(input_mask, trimmed_mask_path)

    # Dynamically compute video_length (in frames) assuming 30 fps
    clip = VideoFileClip(trimmed_video_path)
    video_duration = clip.duration
    clip.close()
    video_length = int(video_duration * 30)

    # Run models
    start_time = time.time()

    # ProPainter (priori)
    propainter.forward(trimmed_video_path, trimmed_mask_path, priori_path,
                       video_length=video_length, ref_stride=ref_stride,
                       neighbor_length=neighbor_length, subvideo_length=subvideo_length,
                       mask_dilation=mask_dilation_iter)

    # DiffuEraser
    guidance_scale = None
    video_inpainting_sd.forward(trimmed_video_path, trimmed_mask_path, priori_path, output_path,
                                max_img_size=max_img_size, video_length=video_length,
                                mask_dilation_iter=mask_dilation_iter,
                                guidance_scale=guidance_scale)

    end_time = time.time()
    print(f"DiffuEraser inference time: {end_time - start_time:.2f} seconds")

    torch.cuda.empty_cache()
    return output_path

# Gradio interface
with gr.Blocks() as demo:
    with gr.Column():
        gr.Markdown("# DiffuEraser: A Diffusion Model for Video Inpainting")
        gr.Markdown("DiffuEraser is a diffusion model for video inpainting, which outperforms state-of-the-art model ProPainter in both content completeness and temporal consistency while maintaining acceptable efficiency.")

        gr.HTML("""
        <div style="display:flex;column-gap:4px;">
            <a href="https://github.com/lixiaowen-xw/DiffuEraser">
                <img src='https://img.shields.io/badge/GitHub-Repo-blue'>
            </a>
            <a href="https://lixiaowen-xw.github.io/DiffuEraser-page">
                <img src='https://img.shields.io/badge/Project-Page-green'>
            </a>
            <a href="https://lixiaowen-xw.github.io/DiffuEraser-page">
                <img src='https://img.shields.io/badge/ArXiv-Paper-red'>
            </a>
            <a href="https://huggingface.co/spaces/fffiloni/DiffuEraser-demo?duplicate=true">
                <img src="https://huggingface.co/datasets/huggingface/badges/resolve/main/duplicate-this-space-sm.svg" alt="Duplicate this Space">
            </a>
        </div>
        """)

        with gr.Row():
            with gr.Column():
                input_video = gr.Video(label="Input Video (MP4 ONLY)")
                input_mask = gr.Video(label="Input Mask Video (MP4 ONLY)")
                submit_btn = gr.Button("Submit")

            with gr.Column():
                video_result = gr.Video(label="Result")
                gr.Examples(
                    examples=[
                        ["./examples/example1/video.mp4", "./examples/example1/mask.mp4"],
                        ["./examples/example2/video.mp4", "./examples/example2/mask.mp4"],
                        ["./examples/example3/video.mp4", "./examples/example3/mask.mp4"],
                    ],
                    inputs=[input_video, input_mask]
                )

        submit_btn.click(fn=infer, inputs=[input_video, input_mask], outputs=[video_result])

demo.queue().launch(show_api=True, show_error=True, ssr_mode=False)