File size: 7,932 Bytes
a32a92f da6e1bc 3ed02d5 da6e1bc 3ed02d5 da6e1bc a73f888 9002fc2 da6e1bc b311dd5 8941a67 260c1a3 941d5c5 260c1a3 8941a67 941d5c5 b311dd5 8941a67 9983b5f 8941a67 260c1a3 8941a67 260c1a3 8941a67 9983b5f 260c1a3 8941a67 da6e1bc 52abc5b a73f888 52abc5b da6e1bc a32a92f 9983b5f c9e9db6 9983b5f a73f888 b311dd5 941d5c5 f840423 b311dd5 9983b5f a32a92f b311dd5 a32a92f 9983b5f f840423 9983b5f b311dd5 9983b5f da6e1bc f840423 da6e1bc 913253a f840423 da6e1bc 913253a da6e1bc a73f888 da6e1bc 3ed02d5 9002fc2 c29b8da 9002fc2 3ed02d5 9002fc2 d91b022 9002fc2 ebaf279 9002fc2 a32a92f 9002fc2 3ed02d5 9983b5f 3ed02d5 a32a92f ebaf279 3ed02d5 9002fc2 3ed02d5 9002fc2 b311dd5 f840423 52abc5b f840423 52abc5b b311dd5 a73f888 b311dd5 a73f888 b311dd5 a73f888 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 |
import json
import re
from collections import defaultdict
from datetime import date
from os import getenv
import pandas as pd
from aiolimiter import AsyncLimiter
from dotenv import load_dotenv
from elevenlabs import AsyncElevenLabs
from huggingface_hub import AsyncInferenceClient, HfApi
from joblib.memory import Memory
from openai import AsyncOpenAI, PermissionDeniedError
from requests import HTTPError, get
# for development purposes, all languages will be evaluated on the fast models
# and only a sample of languages will be evaluated on all models
important_models = [
"meta-llama/llama-4-maverick", # 0.6$
"meta-llama/llama-3.3-70b-instruct", # 0.3$
"meta-llama/llama-3.1-70b-instruct", # 0.3$
"meta-llama/llama-3-70b-instruct", # 0.4$
# "meta-llama/llama-2-70b-chat", # 0.9$; not properly supported by OpenRouter
# "openai/gpt-4.1", # 8$
"openai/gpt-4.1-mini", # 1.6$
"openai/gpt-4.1-nano", # 0.4$
"openai/gpt-4o-mini", # 0.6$
# "openai/gpt-4o-2024-11-20", # 10$
# "openai/gpt-3.5-turbo-0613", # 2$
# "openai/gpt-3.5-turbo", # 1.5$
# "anthropic/claude-3.5-haiku", # 4$ -> too expensive for dev
"mistralai/mistral-small-3.1-24b-instruct", # 0.3$
"mistralai/mistral-saba", # 0.6$
"mistralai/mistral-nemo", # 0.08$
"google/gemini-2.5-flash-preview", # 0.6$
"google/gemini-2.0-flash-lite-001", # 0.3$
"google/gemma-3-27b-it", # 0.2$
# "qwen/qwen-turbo", # 0.2$; recognizes "inappropriate content"
# "qwen/qwq-32b", # 0.2$
# "qwen/qwen-2.5-72b-instruct", # 0.39$
# "qwen/qwen-2-72b-instruct", # 0.9$
"deepseek/deepseek-chat-v3-0324", # 1.1$
"deepseek/deepseek-chat", # 0.89$
"microsoft/phi-4", # 0.07$
"microsoft/phi-4-multimodal-instruct", # 0.1$
"amazon/nova-micro-v1", # 0.09$
]
blocklist = [
"microsoft/wizardlm-2-8x22b" # temporarily rate-limited
]
transcription_models = [
"elevenlabs/scribe_v1",
"openai/whisper-large-v3",
# "openai/whisper-small",
# "facebook/seamless-m4t-v2-large",
]
cache = Memory(location=".cache", verbose=0).cache
@cache
def get_models(date: date):
return get("https://openrouter.ai/api/frontend/models").json()["data"]
def get_model(permaslug):
models = get_models(date.today())
slugs = [
m
for m in models
if m["permaslug"] == permaslug
and m["endpoint"]
and not m["endpoint"]["is_free"]
]
if len(slugs) == 0:
# the problem is that free models typically have very high rate-limiting
print(f"no non-free model found for {permaslug}")
return slugs[0] if len(slugs) >= 1 else None
@cache
def get_historical_popular_models(date: date):
raw = get("https://openrouter.ai/rankings").text
data = re.search(r'{\\"data\\":(.*),\\"isPercentage\\"', raw).group(1)
data = json.loads(data.replace("\\", ""))
counts = defaultdict(int)
for day in data:
for model, count in day["ys"].items():
if model.startswith("openrouter") or model == "Others":
continue
counts[model.split(":")[0]] += count
counts = sorted(counts.items(), key=lambda x: x[1], reverse=True)
models = [get_model(model) for model, _ in counts]
return [m for m in models if m]
@cache
def get_current_popular_models(date: date):
raw = get("https://openrouter.ai/rankings?view=day").text.replace("\\", "")
data = re.search(r'"rankingData":(.*),"rankingType":"day"', raw).group(1)
data = json.loads(data)
data = sorted(data, key=lambda x: x["total_prompt_tokens"], reverse=True)
models = [get_model(model["model_permaslug"]) for model in data]
return [m for m in models if m]
load_dotenv()
client = AsyncOpenAI(
base_url="https://openrouter.ai/api/v1",
api_key=getenv("OPENROUTER_API_KEY"),
)
openrouter_rate_limit = AsyncLimiter(max_rate=20, time_period=1)
elevenlabs_rate_limit = AsyncLimiter(max_rate=2, time_period=1)
huggingface_rate_limit = AsyncLimiter(max_rate=5, time_period=1)
@cache
async def complete(**kwargs) -> str | None:
async with openrouter_rate_limit:
try:
response = await client.chat.completions.create(**kwargs)
except PermissionDeniedError as e:
print(e)
return None
if not response.choices:
raise Exception(response)
return response.choices[0].message.content.strip()
@cache
async def transcribe_elevenlabs(path, model):
modelname = model.split("/")[-1]
client = AsyncElevenLabs(api_key=getenv("ELEVENLABS_API_KEY"))
async with elevenlabs_rate_limit:
with open(path, "rb") as file:
response = await client.speech_to_text.convert(
model_id=modelname, file=file
)
return response.text
@cache
async def transcribe_huggingface(path, model):
client = AsyncInferenceClient(api_key=getenv("HUGGINGFACE_ACCESS_TOKEN"))
async with huggingface_rate_limit:
output = await client.automatic_speech_recognition(model=model, audio=path)
return output.text
async def transcribe(path, model="elevenlabs/scribe_v1"):
provider, modelname = model.split("/")
match provider:
case "elevenlabs":
return await transcribe_elevenlabs(path, modelname)
case "openai" | "facebook":
return await transcribe_huggingface(path, model)
case _:
raise ValueError(f"Model {model} not supported")
def get_or_metadata(id):
# get metadata from OpenRouter
models = get_models(date.today())
metadata = next((m for m in models if m["slug"] == id), None)
return metadata
api = HfApi()
@cache
def get_hf_metadata(row):
# get metadata from the HuggingFace API
empty = {
"hf_id": None,
"creation_date": None,
"size": None,
"type": "closed-source",
"license": None,
}
if not row:
return empty
id = row["hf_slug"] or row["slug"].split(":")[0]
if not id:
return empty
try:
info = api.model_info(id)
license = (
(info.card_data.license or "")
.replace("-", " ")
.replace("mit", "MIT")
.title()
)
return {
"hf_id": info.id,
"creation_date": info.created_at,
"size": info.safetensors.total if info.safetensors else None,
"type": "open-source",
"license": license,
}
except HTTPError:
return empty
def get_cost(row):
cost = float(row["endpoint"]["pricing"]["completion"])
return round(cost * 1_000_000, 2)
@cache
def load_models(date: date):
popular_models = (
get_historical_popular_models(date.today())[:20]
+ get_current_popular_models(date.today())[:10]
)
popular_models = [m["slug"] for m in popular_models]
models = set(important_models + popular_models) - set(blocklist)
models = pd.DataFrame(sorted(list(models)), columns=["id"])
or_metadata = models["id"].apply(get_or_metadata)
hf_metadata = or_metadata.apply(get_hf_metadata)
creation_date_hf = pd.to_datetime(hf_metadata.str["creation_date"]).dt.date
creation_date_or = pd.to_datetime(
or_metadata.str["created_at"].str.split("T").str[0]
).dt.date
models = models.assign(
name=or_metadata.str["short_name"]
.str.replace(" (free)", "")
.str.replace(" (self-moderated)", ""),
provider_name=or_metadata.str["name"].str.split(": ").str[0],
cost=or_metadata.apply(get_cost),
hf_id=hf_metadata.str["hf_id"],
size=hf_metadata.str["size"],
type=hf_metadata.str["type"],
license=hf_metadata.str["license"],
creation_date=creation_date_hf.combine_first(creation_date_or),
)
# models = models[models["cost"] <= 2.0].reset_index(drop=True)
return models
models = load_models(date.today())
|