Upload from GitHub Actions: Update model ranking fetching
Browse files- evals/main.py +5 -5
- evals/models.py +14 -22
- evals/tasks.py +12 -4
- models.json +194 -7
- results.json +0 -0
evals/main.py
CHANGED
@@ -9,8 +9,8 @@ from tqdm.asyncio import tqdm_asyncio
|
|
9 |
# ===== config =====
|
10 |
|
11 |
n_sentences = 10
|
12 |
-
n_languages =
|
13 |
-
n_models =
|
14 |
|
15 |
# ===== run evaluation and aggregate results =====
|
16 |
|
@@ -31,8 +31,8 @@ async def evaluate():
|
|
31 |
]
|
32 |
# filter out combinations that have already been evaluated
|
33 |
combis = pd.DataFrame(combis, columns=["model", "bcp_47", "task"])
|
34 |
-
|
35 |
-
|
36 |
# run evaluations
|
37 |
results = [
|
38 |
tasks[task_name](model, bcp_47, i)
|
@@ -50,7 +50,7 @@ async def evaluate():
|
|
50 |
.reset_index()
|
51 |
)
|
52 |
# save results
|
53 |
-
|
54 |
results = results.sort_values(by=["model", "bcp_47", "task", "metric"])
|
55 |
results.to_json("results.json", **args)
|
56 |
|
|
|
9 |
# ===== config =====
|
10 |
|
11 |
n_sentences = 10
|
12 |
+
n_languages = 18
|
13 |
+
n_models = 22
|
14 |
|
15 |
# ===== run evaluation and aggregate results =====
|
16 |
|
|
|
31 |
]
|
32 |
# filter out combinations that have already been evaluated
|
33 |
combis = pd.DataFrame(combis, columns=["model", "bcp_47", "task"])
|
34 |
+
combis = combis.merge(old_results, on=["model", "bcp_47", "task"], how="left")
|
35 |
+
combis = combis[combis["metric"].isna()][["model", "bcp_47", "task"]]
|
36 |
# run evaluations
|
37 |
results = [
|
38 |
tasks[task_name](model, bcp_47, i)
|
|
|
50 |
.reset_index()
|
51 |
)
|
52 |
# save results
|
53 |
+
results = pd.concat([old_results, results])
|
54 |
results = results.sort_values(by=["model", "bcp_47", "task", "metric"])
|
55 |
results.to_json("results.json", **args)
|
56 |
|
evals/models.py
CHANGED
@@ -45,10 +45,6 @@ important_models = [
|
|
45 |
"amazon/nova-micro-v1", # 0.09$
|
46 |
]
|
47 |
|
48 |
-
blocklist = [
|
49 |
-
"google/gemini-2.5-pro-exp-03-25" # rate limit too low
|
50 |
-
]
|
51 |
-
|
52 |
transcription_models = [
|
53 |
"elevenlabs/scribe_v1",
|
54 |
"openai/whisper-large-v3",
|
@@ -68,7 +64,7 @@ def get_model(permaslug):
|
|
68 |
models = get_models(date.today())
|
69 |
slugs = [m for m in models if m["permaslug"] == permaslug and m["endpoint"] and not m["endpoint"]["is_free"]]
|
70 |
if len(slugs) == 0:
|
71 |
-
print(f"no model found for {permaslug}")
|
72 |
return slugs[0] if len(slugs) >= 1 else None
|
73 |
|
74 |
|
@@ -90,9 +86,9 @@ def get_historical_popular_models(date: date):
|
|
90 |
|
91 |
@cache
|
92 |
def get_current_popular_models(date: date):
|
93 |
-
raw = get("https://openrouter.ai/rankings").text
|
94 |
-
data = re.search(r'
|
95 |
-
data = json.loads(data
|
96 |
data = sorted(data, key=lambda x: x["total_prompt_tokens"], reverse=True)
|
97 |
models = [get_model(model["model_permaslug"]) for model in data]
|
98 |
return [m for m in models if m]
|
@@ -110,16 +106,13 @@ huggingface_rate_limit = AsyncLimiter(max_rate=5, time_period=1)
|
|
110 |
|
111 |
|
112 |
@cache
|
113 |
-
async def complete(**kwargs):
|
114 |
async with openrouter_rate_limit:
|
115 |
try:
|
116 |
response = await client.chat.completions.create(**kwargs)
|
117 |
except PermissionDeniedError as e:
|
118 |
-
|
119 |
-
|
120 |
-
return None
|
121 |
-
else:
|
122 |
-
raise e
|
123 |
if not response.choices:
|
124 |
raise Exception(response)
|
125 |
return response.choices[0].message.content.strip()
|
@@ -206,13 +199,12 @@ def get_cost(row):
|
|
206 |
|
207 |
@cache
|
208 |
def load_models(date: date):
|
209 |
-
|
210 |
-
|
211 |
-
|
212 |
-
|
213 |
-
|
214 |
-
|
215 |
-
models = set(important_models) - set(blocklist)
|
216 |
models = pd.DataFrame(sorted(list(models)), columns=["id"])
|
217 |
or_metadata = models["id"].apply(get_or_metadata)
|
218 |
hf_metadata = or_metadata.apply(get_hf_metadata)
|
@@ -222,7 +214,7 @@ def load_models(date: date):
|
|
222 |
).dt.date
|
223 |
|
224 |
models = models.assign(
|
225 |
-
name=or_metadata.str["short_name"],
|
226 |
provider_name=or_metadata.str["name"].str.split(": ").str[0],
|
227 |
cost=or_metadata.apply(get_cost),
|
228 |
hf_id=hf_metadata.str["hf_id"],
|
|
|
45 |
"amazon/nova-micro-v1", # 0.09$
|
46 |
]
|
47 |
|
|
|
|
|
|
|
|
|
48 |
transcription_models = [
|
49 |
"elevenlabs/scribe_v1",
|
50 |
"openai/whisper-large-v3",
|
|
|
64 |
models = get_models(date.today())
|
65 |
slugs = [m for m in models if m["permaslug"] == permaslug and m["endpoint"] and not m["endpoint"]["is_free"]]
|
66 |
if len(slugs) == 0:
|
67 |
+
print(f"no non-free model found for {permaslug}")
|
68 |
return slugs[0] if len(slugs) >= 1 else None
|
69 |
|
70 |
|
|
|
86 |
|
87 |
@cache
|
88 |
def get_current_popular_models(date: date):
|
89 |
+
raw = get("https://openrouter.ai/rankings?view=day").text.replace("\\", "")
|
90 |
+
data = re.search(r'"rankingData":(.*),"rankingType":"day"', raw).group(1)
|
91 |
+
data = json.loads(data)
|
92 |
data = sorted(data, key=lambda x: x["total_prompt_tokens"], reverse=True)
|
93 |
models = [get_model(model["model_permaslug"]) for model in data]
|
94 |
return [m for m in models if m]
|
|
|
106 |
|
107 |
|
108 |
@cache
|
109 |
+
async def complete(**kwargs) -> str | None:
|
110 |
async with openrouter_rate_limit:
|
111 |
try:
|
112 |
response = await client.chat.completions.create(**kwargs)
|
113 |
except PermissionDeniedError as e:
|
114 |
+
print(e)
|
115 |
+
return None
|
|
|
|
|
|
|
116 |
if not response.choices:
|
117 |
raise Exception(response)
|
118 |
return response.choices[0].message.content.strip()
|
|
|
199 |
|
200 |
@cache
|
201 |
def load_models(date: date):
|
202 |
+
popular_models = (
|
203 |
+
get_historical_popular_models(date.today())[:30]
|
204 |
+
+ get_current_popular_models(date.today())[:10]
|
205 |
+
)
|
206 |
+
popular_models = [m["slug"] for m in popular_models]
|
207 |
+
models = set(important_models + popular_models)
|
|
|
208 |
models = pd.DataFrame(sorted(list(models)), columns=["id"])
|
209 |
or_metadata = models["id"].apply(get_or_metadata)
|
210 |
hf_metadata = or_metadata.apply(get_hf_metadata)
|
|
|
214 |
).dt.date
|
215 |
|
216 |
models = models.assign(
|
217 |
+
name=or_metadata.str["short_name"].str.replace(" (free)", ""),
|
218 |
provider_name=or_metadata.str["name"].str.split(": ").str[0],
|
219 |
cost=or_metadata.apply(get_cost),
|
220 |
hf_id=hf_metadata.str["hf_id"],
|
evals/tasks.py
CHANGED
@@ -30,7 +30,10 @@ async def translate_and_evaluate(model, bcp_47, sentence_nr, mode="from"):
|
|
30 |
pass
|
31 |
case "to":
|
32 |
original_language, target_language = target_language, original_language
|
33 |
-
if
|
|
|
|
|
|
|
34 |
return []
|
35 |
original_sentence = flores_sentences(original_language)["text"][sentence_nr].strip()
|
36 |
target_sentence = flores_sentences(target_language)["text"][sentence_nr].strip()
|
@@ -70,6 +73,7 @@ async def translate_and_evaluate(model, bcp_47, sentence_nr, mode="from"):
|
|
70 |
)
|
71 |
]
|
72 |
|
|
|
73 |
async def classify_and_evaluate(model, bcp_47, nr):
|
74 |
language = languages[languages["bcp_47"] == bcp_47].iloc[0]
|
75 |
sentences = flores_sentences(language)
|
@@ -119,9 +123,13 @@ async def classify_and_evaluate(model, bcp_47, nr):
|
|
119 |
)
|
120 |
true = test_paragraph.topic
|
121 |
others = [t for t in top_topics if t != true]
|
122 |
-
acc =
|
123 |
-
|
124 |
-
|
|
|
|
|
|
|
|
|
125 |
)
|
126 |
except Exception as e:
|
127 |
if "`inputs` tokens + `max_new_tokens` must be <= 4097" in str(e):
|
|
|
30 |
pass
|
31 |
case "to":
|
32 |
original_language, target_language = target_language, original_language
|
33 |
+
if (
|
34 |
+
flores_sentences(original_language) is None
|
35 |
+
or flores_sentences(target_language) is None
|
36 |
+
):
|
37 |
return []
|
38 |
original_sentence = flores_sentences(original_language)["text"][sentence_nr].strip()
|
39 |
target_sentence = flores_sentences(target_language)["text"][sentence_nr].strip()
|
|
|
73 |
)
|
74 |
]
|
75 |
|
76 |
+
|
77 |
async def classify_and_evaluate(model, bcp_47, nr):
|
78 |
language = languages[languages["bcp_47"] == bcp_47].iloc[0]
|
79 |
sentences = flores_sentences(language)
|
|
|
123 |
)
|
124 |
true = test_paragraph.topic
|
125 |
others = [t for t in top_topics if t != true]
|
126 |
+
acc = (
|
127 |
+
int(
|
128 |
+
pred.startswith(true)
|
129 |
+
or (true in pred and not any(o in pred for o in others))
|
130 |
+
)
|
131 |
+
if pred
|
132 |
+
else 0
|
133 |
)
|
134 |
except Exception as e:
|
135 |
if "`inputs` tokens + `max_new_tokens` must be <= 4097" in str(e):
|
models.json
CHANGED
@@ -10,9 +10,31 @@
|
|
10 |
"license":null,
|
11 |
"creation_date":1733356800000
|
12 |
},
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
13 |
{
|
14 |
"id":"deepseek\/deepseek-chat",
|
15 |
-
"name":"DeepSeek V3
|
16 |
"provider_name":"DeepSeek",
|
17 |
"cost":0.0,
|
18 |
"hf_id":"deepseek-ai\/DeepSeek-V3",
|
@@ -23,7 +45,7 @@
|
|
23 |
},
|
24 |
{
|
25 |
"id":"deepseek\/deepseek-chat-v3-0324",
|
26 |
-
"name":"DeepSeek V3 0324
|
27 |
"provider_name":"DeepSeek",
|
28 |
"cost":0.0,
|
29 |
"hf_id":"deepseek-ai\/DeepSeek-V3-0324",
|
@@ -32,6 +54,28 @@
|
|
32 |
"license":"Mit",
|
33 |
"creation_date":1742774400000
|
34 |
},
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
35 |
{
|
36 |
"id":"google\/gemini-2.0-flash-lite-001",
|
37 |
"name":"Gemini 2.0 Flash Lite",
|
@@ -54,9 +98,53 @@
|
|
54 |
"license":null,
|
55 |
"creation_date":1744848000000
|
56 |
},
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
57 |
{
|
58 |
"id":"google\/gemma-3-27b-it",
|
59 |
-
"name":"Gemma 3 27B
|
60 |
"provider_name":"Google",
|
61 |
"cost":0.0,
|
62 |
"hf_id":"google\/gemma-3-27b-it",
|
@@ -65,6 +153,17 @@
|
|
65 |
"license":"Gemma",
|
66 |
"creation_date":1740787200000
|
67 |
},
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
68 |
{
|
69 |
"id":"meta-llama\/llama-3-70b-instruct",
|
70 |
"name":"Llama 3 70B Instruct",
|
@@ -76,6 +175,17 @@
|
|
76 |
"license":"Llama3",
|
77 |
"creation_date":1713312000000
|
78 |
},
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
79 |
{
|
80 |
"id":"meta-llama\/llama-3.1-70b-instruct",
|
81 |
"name":"Llama 3.1 70B Instruct",
|
@@ -87,9 +197,31 @@
|
|
87 |
"license":"Llama3.1",
|
88 |
"creation_date":1721088000000
|
89 |
},
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
90 |
{
|
91 |
"id":"meta-llama\/llama-3.3-70b-instruct",
|
92 |
-
"name":"Llama 3.3 70B Instruct
|
93 |
"provider_name":"Meta",
|
94 |
"cost":0.0,
|
95 |
"hf_id":"meta-llama\/Llama-3.3-70B-Instruct",
|
@@ -100,7 +232,7 @@
|
|
100 |
},
|
101 |
{
|
102 |
"id":"meta-llama\/llama-4-maverick",
|
103 |
-
"name":"Llama 4 Maverick
|
104 |
"provider_name":"Meta",
|
105 |
"cost":0.0,
|
106 |
"hf_id":"meta-llama\/Llama-4-Maverick-17B-128E-Instruct",
|
@@ -131,9 +263,31 @@
|
|
131 |
"license":"Mit",
|
132 |
"creation_date":1740355200000
|
133 |
},
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
134 |
{
|
135 |
"id":"mistralai\/mistral-nemo",
|
136 |
-
"name":"Mistral Nemo
|
137 |
"provider_name":"Mistral",
|
138 |
"cost":0.0,
|
139 |
"hf_id":"mistralai\/Mistral-Nemo-Instruct-2407",
|
@@ -155,7 +309,7 @@
|
|
155 |
},
|
156 |
{
|
157 |
"id":"mistralai\/mistral-small-3.1-24b-instruct",
|
158 |
-
"name":"Mistral Small 3.1 24B
|
159 |
"provider_name":"Mistral",
|
160 |
"cost":0.0,
|
161 |
"hf_id":"mistralai\/Mistral-Small-3.1-24B-Instruct-2503",
|
@@ -164,6 +318,28 @@
|
|
164 |
"license":"Apache 2.0",
|
165 |
"creation_date":1741651200000
|
166 |
},
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
167 |
{
|
168 |
"id":"openai\/gpt-4.1-mini",
|
169 |
"name":"GPT-4.1 Mini",
|
@@ -196,5 +372,16 @@
|
|
196 |
"type":"Commercial",
|
197 |
"license":null,
|
198 |
"creation_date":1721260800000
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
199 |
}
|
200 |
]
|
|
|
10 |
"license":null,
|
11 |
"creation_date":1733356800000
|
12 |
},
|
13 |
+
{
|
14 |
+
"id":"anthropic\/claude-3-haiku",
|
15 |
+
"name":"Claude 3 Haiku (self-moderated)",
|
16 |
+
"provider_name":"Anthropic",
|
17 |
+
"cost":1.25,
|
18 |
+
"hf_id":null,
|
19 |
+
"size":null,
|
20 |
+
"type":"Commercial",
|
21 |
+
"license":null,
|
22 |
+
"creation_date":1710288000000
|
23 |
+
},
|
24 |
+
{
|
25 |
+
"id":"cohere\/command-r",
|
26 |
+
"name":"Command R",
|
27 |
+
"provider_name":"Cohere",
|
28 |
+
"cost":1.5,
|
29 |
+
"hf_id":null,
|
30 |
+
"size":null,
|
31 |
+
"type":"Commercial",
|
32 |
+
"license":null,
|
33 |
+
"creation_date":1710374400000
|
34 |
+
},
|
35 |
{
|
36 |
"id":"deepseek\/deepseek-chat",
|
37 |
+
"name":"DeepSeek V3",
|
38 |
"provider_name":"DeepSeek",
|
39 |
"cost":0.0,
|
40 |
"hf_id":"deepseek-ai\/DeepSeek-V3",
|
|
|
45 |
},
|
46 |
{
|
47 |
"id":"deepseek\/deepseek-chat-v3-0324",
|
48 |
+
"name":"DeepSeek V3 0324",
|
49 |
"provider_name":"DeepSeek",
|
50 |
"cost":0.0,
|
51 |
"hf_id":"deepseek-ai\/DeepSeek-V3-0324",
|
|
|
54 |
"license":"Mit",
|
55 |
"creation_date":1742774400000
|
56 |
},
|
57 |
+
{
|
58 |
+
"id":"deepseek\/deepseek-r1",
|
59 |
+
"name":"R1",
|
60 |
+
"provider_name":"DeepSeek",
|
61 |
+
"cost":0.0,
|
62 |
+
"hf_id":"deepseek-ai\/DeepSeek-R1",
|
63 |
+
"size":684531386000.0,
|
64 |
+
"type":"Open",
|
65 |
+
"license":"Mit",
|
66 |
+
"creation_date":1737331200000
|
67 |
+
},
|
68 |
+
{
|
69 |
+
"id":"google\/gemini-2.0-flash-001",
|
70 |
+
"name":"Gemini 2.0 Flash",
|
71 |
+
"provider_name":"Google",
|
72 |
+
"cost":0.4,
|
73 |
+
"hf_id":null,
|
74 |
+
"size":null,
|
75 |
+
"type":"Commercial",
|
76 |
+
"license":null,
|
77 |
+
"creation_date":1738713600000
|
78 |
+
},
|
79 |
{
|
80 |
"id":"google\/gemini-2.0-flash-lite-001",
|
81 |
"name":"Gemini 2.0 Flash Lite",
|
|
|
98 |
"license":null,
|
99 |
"creation_date":1744848000000
|
100 |
},
|
101 |
+
{
|
102 |
+
"id":"google\/gemini-2.5-flash-preview-05-20",
|
103 |
+
"name":"Gemini 2.5 Flash Preview 05-20",
|
104 |
+
"provider_name":"Google",
|
105 |
+
"cost":0.6,
|
106 |
+
"hf_id":null,
|
107 |
+
"size":null,
|
108 |
+
"type":"Commercial",
|
109 |
+
"license":null,
|
110 |
+
"creation_date":1747699200000
|
111 |
+
},
|
112 |
+
{
|
113 |
+
"id":"google\/gemini-flash-1.5",
|
114 |
+
"name":"Gemini 1.5 Flash ",
|
115 |
+
"provider_name":"Google",
|
116 |
+
"cost":0.3,
|
117 |
+
"hf_id":null,
|
118 |
+
"size":null,
|
119 |
+
"type":"Commercial",
|
120 |
+
"license":null,
|
121 |
+
"creation_date":1715644800000
|
122 |
+
},
|
123 |
+
{
|
124 |
+
"id":"google\/gemini-flash-1.5-8b",
|
125 |
+
"name":"Gemini 1.5 Flash 8B",
|
126 |
+
"provider_name":"Google",
|
127 |
+
"cost":0.15,
|
128 |
+
"hf_id":null,
|
129 |
+
"size":null,
|
130 |
+
"type":"Commercial",
|
131 |
+
"license":null,
|
132 |
+
"creation_date":1727913600000
|
133 |
+
},
|
134 |
+
{
|
135 |
+
"id":"google\/gemma-2-9b-it",
|
136 |
+
"name":"Gemma 2 9B",
|
137 |
+
"provider_name":"Google",
|
138 |
+
"cost":0.0,
|
139 |
+
"hf_id":"google\/gemma-2-9b-it",
|
140 |
+
"size":9241705984.0,
|
141 |
+
"type":"Open",
|
142 |
+
"license":"Gemma",
|
143 |
+
"creation_date":1719187200000
|
144 |
+
},
|
145 |
{
|
146 |
"id":"google\/gemma-3-27b-it",
|
147 |
+
"name":"Gemma 3 27B",
|
148 |
"provider_name":"Google",
|
149 |
"cost":0.0,
|
150 |
"hf_id":"google\/gemma-3-27b-it",
|
|
|
153 |
"license":"Gemma",
|
154 |
"creation_date":1740787200000
|
155 |
},
|
156 |
+
{
|
157 |
+
"id":"gryphe\/mythomax-l2-13b",
|
158 |
+
"name":"MythoMax 13B",
|
159 |
+
"provider_name":"MythoMax 13B",
|
160 |
+
"cost":0.07,
|
161 |
+
"hf_id":"Gryphe\/MythoMax-L2-13b",
|
162 |
+
"size":null,
|
163 |
+
"type":"Open",
|
164 |
+
"license":"Other",
|
165 |
+
"creation_date":1691625600000
|
166 |
+
},
|
167 |
{
|
168 |
"id":"meta-llama\/llama-3-70b-instruct",
|
169 |
"name":"Llama 3 70B Instruct",
|
|
|
175 |
"license":"Llama3",
|
176 |
"creation_date":1713312000000
|
177 |
},
|
178 |
+
{
|
179 |
+
"id":"meta-llama\/llama-3-8b-instruct",
|
180 |
+
"name":"Llama 3 8B Instruct",
|
181 |
+
"provider_name":"Meta",
|
182 |
+
"cost":0.06,
|
183 |
+
"hf_id":"meta-llama\/Meta-Llama-3-8B-Instruct",
|
184 |
+
"size":8030261248.0,
|
185 |
+
"type":"Open",
|
186 |
+
"license":"Llama3",
|
187 |
+
"creation_date":1713312000000
|
188 |
+
},
|
189 |
{
|
190 |
"id":"meta-llama\/llama-3.1-70b-instruct",
|
191 |
"name":"Llama 3.1 70B Instruct",
|
|
|
197 |
"license":"Llama3.1",
|
198 |
"creation_date":1721088000000
|
199 |
},
|
200 |
+
{
|
201 |
+
"id":"meta-llama\/llama-3.1-8b-instruct",
|
202 |
+
"name":"Llama 3.1 8B Instruct",
|
203 |
+
"provider_name":"Meta",
|
204 |
+
"cost":0.0,
|
205 |
+
"hf_id":"meta-llama\/Llama-3.1-8B-Instruct",
|
206 |
+
"size":8030261248.0,
|
207 |
+
"type":"Open",
|
208 |
+
"license":"Llama3.1",
|
209 |
+
"creation_date":1721260800000
|
210 |
+
},
|
211 |
+
{
|
212 |
+
"id":"meta-llama\/llama-3.2-1b-instruct",
|
213 |
+
"name":"Llama 3.2 1B Instruct",
|
214 |
+
"provider_name":"Meta",
|
215 |
+
"cost":0.0,
|
216 |
+
"hf_id":"meta-llama\/Llama-3.2-1B-Instruct",
|
217 |
+
"size":1235814400.0,
|
218 |
+
"type":"Open",
|
219 |
+
"license":"Llama3.2",
|
220 |
+
"creation_date":1726617600000
|
221 |
+
},
|
222 |
{
|
223 |
"id":"meta-llama\/llama-3.3-70b-instruct",
|
224 |
+
"name":"Llama 3.3 70B Instruct",
|
225 |
"provider_name":"Meta",
|
226 |
"cost":0.0,
|
227 |
"hf_id":"meta-llama\/Llama-3.3-70B-Instruct",
|
|
|
232 |
},
|
233 |
{
|
234 |
"id":"meta-llama\/llama-4-maverick",
|
235 |
+
"name":"Llama 4 Maverick",
|
236 |
"provider_name":"Meta",
|
237 |
"cost":0.0,
|
238 |
"hf_id":"meta-llama\/Llama-4-Maverick-17B-128E-Instruct",
|
|
|
263 |
"license":"Mit",
|
264 |
"creation_date":1740355200000
|
265 |
},
|
266 |
+
{
|
267 |
+
"id":"microsoft\/wizardlm-2-8x22b",
|
268 |
+
"name":"WizardLM-2 8x22B",
|
269 |
+
"provider_name":"WizardLM-2 8x22B",
|
270 |
+
"cost":0.5,
|
271 |
+
"hf_id":null,
|
272 |
+
"size":null,
|
273 |
+
"type":"Commercial",
|
274 |
+
"license":null,
|
275 |
+
"creation_date":1713225600000
|
276 |
+
},
|
277 |
+
{
|
278 |
+
"id":"mistralai\/mistral-7b-instruct",
|
279 |
+
"name":"Mistral 7B Instruct",
|
280 |
+
"provider_name":"Mistral",
|
281 |
+
"cost":0.0,
|
282 |
+
"hf_id":"mistralai\/Mistral-7B-Instruct-v0.3",
|
283 |
+
"size":7248023552.0,
|
284 |
+
"type":"Open",
|
285 |
+
"license":"Apache 2.0",
|
286 |
+
"creation_date":1716336000000
|
287 |
+
},
|
288 |
{
|
289 |
"id":"mistralai\/mistral-nemo",
|
290 |
+
"name":"Mistral Nemo",
|
291 |
"provider_name":"Mistral",
|
292 |
"cost":0.0,
|
293 |
"hf_id":"mistralai\/Mistral-Nemo-Instruct-2407",
|
|
|
309 |
},
|
310 |
{
|
311 |
"id":"mistralai\/mistral-small-3.1-24b-instruct",
|
312 |
+
"name":"Mistral Small 3.1 24B",
|
313 |
"provider_name":"Mistral",
|
314 |
"cost":0.0,
|
315 |
"hf_id":"mistralai\/Mistral-Small-3.1-24B-Instruct-2503",
|
|
|
318 |
"license":"Apache 2.0",
|
319 |
"creation_date":1741651200000
|
320 |
},
|
321 |
+
{
|
322 |
+
"id":"mistralai\/mistral-tiny",
|
323 |
+
"name":"Mistral Tiny",
|
324 |
+
"provider_name":"Mistral Tiny",
|
325 |
+
"cost":0.25,
|
326 |
+
"hf_id":null,
|
327 |
+
"size":null,
|
328 |
+
"type":"Commercial",
|
329 |
+
"license":null,
|
330 |
+
"creation_date":1704844800000
|
331 |
+
},
|
332 |
+
{
|
333 |
+
"id":"nousresearch\/hermes-3-llama-3.1-405b",
|
334 |
+
"name":"Hermes 3 405B Instruct",
|
335 |
+
"provider_name":"Nous",
|
336 |
+
"cost":0.8,
|
337 |
+
"hf_id":"NousResearch\/Hermes-3-Llama-3.1-405B",
|
338 |
+
"size":405853388800.0,
|
339 |
+
"type":"Open",
|
340 |
+
"license":"Llama3",
|
341 |
+
"creation_date":1723507200000
|
342 |
+
},
|
343 |
{
|
344 |
"id":"openai\/gpt-4.1-mini",
|
345 |
"name":"GPT-4.1 Mini",
|
|
|
372 |
"type":"Commercial",
|
373 |
"license":null,
|
374 |
"creation_date":1721260800000
|
375 |
+
},
|
376 |
+
{
|
377 |
+
"id":"openai\/gpt-4o-mini-2024-07-18",
|
378 |
+
"name":"GPT-4o-mini (2024-07-18)",
|
379 |
+
"provider_name":"OpenAI",
|
380 |
+
"cost":0.6,
|
381 |
+
"hf_id":null,
|
382 |
+
"size":null,
|
383 |
+
"type":"Commercial",
|
384 |
+
"license":null,
|
385 |
+
"creation_date":1721260800000
|
386 |
}
|
387 |
]
|
results.json
CHANGED
The diff for this file is too large to render.
See raw diff
|
|