File size: 28,196 Bytes
cae4d0f 5b04d4e cae4d0f 5888550 c8225f5 97a28b9 c8225f5 6b09246 97a28b9 6b09246 97a28b9 d0105c8 97a28b9 d0105c8 97a28b9 d0105c8 97a28b9 d0105c8 97a28b9 d0105c8 97a28b9 d0105c8 97a28b9 d0105c8 97a28b9 d0105c8 97a28b9 d0105c8 97a28b9 c8225f5 56e849d c8225f5 56e849d c8225f5 6b09246 c8225f5 97a28b9 c8225f5 cae4d0f 56e849d 6b09246 cae4d0f 7a90675 dbd3b18 7a90675 dbd3b18 cae4d0f ea6af72 5888550 ea6af72 6b09246 56e849d 13fe545 56e849d d0105c8 56e849d d0105c8 56e849d d0105c8 56e849d d0105c8 56e849d d0105c8 56e849d 13fe545 ea6af72 13fe545 ea6af72 7a90675 ea6af72 6b09246 5888550 6b09246 ea6af72 5888550 ea6af72 5888550 13fe545 6b09246 13fe545 c8225f5 5888550 13fe545 5888550 6b09246 5888550 ea6af72 cae4d0f dbd3b18 cae4d0f ea6af72 cae4d0f 13fe545 cae4d0f 6b09246 cae4d0f 490893b b2119dc 490893b b2119dc 490893b b2119dc 490893b cae4d0f ea6af72 cae4d0f 7a90675 dbd3b18 cae4d0f 56e849d cae4d0f 6b09246 713729d 6b09246 af6e747 c8225f5 bf11a73 d0105c8 c8225f5 cae4d0f 7a90675 6b09246 cae4d0f 7a90675 cae4d0f 5888550 67324c2 13fe545 cae4d0f 7a90675 5888550 7a90675 67324c2 7a90675 13fe545 7a90675 13fe545 7a90675 cae4d0f 490893b 6927b6c 490893b cae4d0f 5888550 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 |
import gradio as gr
from gradio_leaderboard import Leaderboard, ColumnFilter, SelectColumns
import pandas as pd
from apscheduler.schedulers.background import BackgroundScheduler
from huggingface_hub import snapshot_download
from src.about import CITATION_BUTTON_LABEL, CITATION_BUTTON_TEXT, EVALUATION_QUEUE_TEXT, INTRODUCTION_TEXT, LLM_BENCHMARKS_TEXT, TITLE
from src.tasks import TASK_DESCRIPTIONS, MEASURE_DESCRIPTION
from src.display.css_html_js import custom_css
from src.display.utils import BENCHMARK_COLS, COLS, EVAL_COLS, EVAL_TYPES, AutoEvalColumn, ModelType, fields, WeightType, Precision
from src.envs import API, EVAL_REQUESTS_PATH, EVAL_RESULTS_PATH, QUEUE_REPO, REPO_ID, RESULTS_REPO, TOKEN
from src.populate import get_evaluation_queue_df, get_leaderboard_df
from src.submission.submit import add_new_eval
import random
import matplotlib.pyplot as plt
import re
import plotly.express as px
import plotly.graph_objects as go
import numpy as np
def mean_of_max_per_field(df):
"""
Calcola il massimo per ciascun campo e poi la media dei massimi.
Args:
df (pd.DataFrame): DataFrame con colonne TE, SA, HS, AT, WIC, FAQ, LS, SU, NER, REL
Returns:
float: media dei valori massimi dei campi
"""
fields = ["TE", "SA", "HS", "AT", "WIC", "FAQ", "LS", "SU", "NER", "REL"]
#print(df.columns)
# Controlla che tutte le colonne esistano nel DataFrame
missing = [f for f in fields if f not in df.columns]
if missing:
raise ValueError(f"Le seguenti colonne mancano nel DataFrame: {missing}")
# Calcola il massimo per ciascun campo
max_values = df[fields].max()
# Calcola la media dei massimi
mean_max = max_values.mean()
return mean_max
def boxplot_per_task(dataframe=None, baselines=None):
print(dataframe.columns)
tasks = ["TE", "SA", "HS", "AT", "WIC", "FAQ", "LS", "SU", "NER", "REL"]
if dataframe is None:
np.random.seed(42)
dataframe = pd.DataFrame({
task: np.random.uniform(0.4, 0.9, 20) * 100
for task in tasks
})
if baselines is None:
baselines = {task: np.random.randint(50, 70) for task in tasks}
colors = ["#1f77b4", "#ff7f0e", "#2ca02c", "#d62728", "#9467bd",
"#8c564b", "#e377c2", "#7f7f7f", "#bcbd22", "#17becf"]
fig = go.Figure()
for i, task in enumerate(tasks):
if task in dataframe.columns:
y_data = dataframe[task].dropna().tolist()
# boxplot
fig.add_trace(go.Box(
y=y_data,
name=task,
marker=dict(color=colors[i]),
# Modifica: Impostiamo il colore della linea della scatola su un colore diverso dal riempimento
line=dict(color="black", width=2),
fillcolor=colors[i],
opacity=0.7,
hovertemplate="<b>"+task+"</b><br>Accuracy: %{y:.2f}%<extra></extra>",
width=0.6,
whiskerwidth=0.2,
quartilemethod="linear"
))
# baseline
if task in baselines and baselines[task] is not None:
fig.add_shape(
type="line",
x0=i-0.3, x1=i+0.3,
y0=baselines[task], y1=baselines[task],
line=dict(color="black", width=2, dash="dash"),
xref="x", yref="y"
)
fig.add_annotation(
x=i, y=baselines[task],
text=f"{baselines[task]}%",
showarrow=False,
yshift=10,
font=dict(size=10, color="black")
)
fig.update_layout(
title="Distribution of Model Accuracy by Task",
xaxis_title="Task",
yaxis_title="Accuracy (%)",
template="plotly_white",
boxmode="group",
dragmode=False,
font=dict(family="Arial", size=13),
margin=dict(b=140),
annotations=[
dict(
text=(
"Boxplots show LLM accuracy in zero/few-shot settings. Black dashed lines<br>"
"indicate best-performing supervised models evaluated on EVALITA."
),
xref="paper", yref="paper",
x=0.5, y=-0.33,
showarrow=False,
font=dict(size=12, color="gray")
)
]
)
fig.update_yaxes(range=[0, 100], fixedrange=True)
return fig
# 🔹 Esempio d’uso
BASELINES = {
"TE":71.00, "SA": 66.38, "HS": 80.88, "AT": 82.40, "WIC": 85.00,
"LS": 38.82, "SU": 38.91, "NER":88.00, "REL": 62.99
}
def boxplot_prompts_per_task(dataframe, tasks=None):
if tasks is None:
tasks = ["TE", "SA", "HS", "AT", "WIC", "FAQ", "LS", "SU", "NER", "REL"]
fig = go.Figure()
# Liste per creare una sola voce in legenda per Average e Best
avg_x, avg_y = [], []
best_x, best_y, best_text = [], [], []
for task in tasks:
avg_col = f"{task} Prompt Average"
best_col = f"{task} Best Prompt"
best_id_col = f"{task} Best Prompt Id"
if all(col in dataframe.columns for col in [avg_col, best_col, best_id_col]):
avg_value = dataframe[avg_col].mean()
avg_x.append(task)
avg_y.append(avg_value)
best_value = dataframe[best_col].mean()
best_x.append(task)
best_y.append(best_value)
best_id = dataframe[best_id_col].mode()[0] # Most frequent best prompt id
best_text.append(f"P:{best_id}")
# Barre Average Accuracy (azzurro)
fig.add_trace(go.Bar(
x=avg_x,
y=avg_y,
name="Average Accuracy",
marker_color="#1f77b4",
#hovertemplate="%{y:.2f}%<extra></extra>"
#hovertemplate="<b>" + task + "</b><br>Accuracy: %{y:.2f}%<extra></extra>",
))
# Barre Best Prompt (rosso)
fig.add_trace(go.Bar(
x=best_x,
y=best_y,
name="Best Prompt",
marker_color="#d62728",
#hovertemplate="%{y:.2f}%<extra></extra>"
#hovertemplate = "<b>" + task + "</b><br>Accuracy: %{y:.2f}%<extra></extra>",
))
# Testo sopra barre Best Prompt con ID
for x, y, text in zip(best_x, best_y, best_text):
fig.add_annotation(
x=x,
y=y + 1, # leggermente sopra la barra
text=text,
showarrow=False,
font=dict(size=12, color="black")
)
fig.update_layout(
title="Comparison of Average Prompt Accuracy vs Best Prompt Accuracy per Task",
xaxis_title="Task",
yaxis_title="Accuracy (%)",
barmode='group',
template="plotly_white",
font=dict(family="Arial", size=13),
yaxis=dict(range=[0, 100], fixedrange=True)
)
return fig
def line_chart(dataframe):
# Separiamo i dati in base a IS_FS
df_true = dataframe[dataframe['IS_FS'] == True]
df_false = dataframe[dataframe['IS_FS'] == False]
# Estrai valori x, y e labels per True e False
x_true = df_true['#Params (B)'].tolist()
y_true = df_true['Avg. Comb. Perf. ⬆️'].tolist()
labels_true = [
re.search(r'>([^<>/]+/[^<>]+)<', m).group(1).split('/')[-1]
for m in df_true['Model'].tolist()
]
x_false = df_false['#Params (B)'].tolist()
y_false = df_false['Avg. Comb. Perf. ⬆️'].tolist()
labels_false = [
re.search(r'>([^<>/]+/[^<>]+)<', m).group(1).split('/')[-1]
for m in df_false['Model'].tolist()
]
fig = go.Figure()
# Punti IS_FS=True
fig.add_trace(go.Scatter(
x=x_true,
y=y_true,
mode='markers', # solo marker, niente testo
name='5-Shot',
marker=dict(color='red', size=10),
hovertemplate='<b>%{customdata}</b><br>#Params: %{x}<br>Performance: %{y}<extra></extra>',
customdata=labels_true # tutte le informazioni sul hover
))
# Punti IS_FS=False
fig.add_trace(go.Scatter(
x=x_false,
y=y_false,
mode='markers',
name='0-Shot',
marker=dict(color='blue', size=10),
hovertemplate='<b>%{customdata}</b><br>#Params: %{x}<br>Performance: %{y}<extra></extra>',
customdata=labels_false
))
fig.update_layout(
title="Avg. Combined Performance vs #Params",
xaxis_title="#Params (B)",
yaxis_title="Avg. Combined Performance ⬆️",
template="plotly_white",
hovermode="closest",
dragmode=False
)
# Disabilita lo zoom e altri controlli
fig.update_xaxes(fixedrange=True, rangeslider_visible=False)
fig.update_yaxes(fixedrange=True)
#fig.update_yaxes(range=[0, 100], fixedrange=True)
return fig
# Define task metadata (icons, names, descriptions)
TASK_METADATA_MULTIPLECHOICE = {
"TE": {"icon": "📊", "name": "Textual Entailment", "tooltip": ""},
"SA": {"icon": "😃", "name": "Sentiment Analysis", "tooltip": ""},
"HS": {"icon": "⚠️", "name": "Hate Speech", "tooltip": ""},
"AT": {"icon": "🏥", "name": "Admission Test", "tooltip": ""},
"WIC": {"icon": "🔤", "name": "Word in Context", "tooltip": ""},
"FAQ": {"icon": "❓", "name": "Frequently Asked Questions", "tooltip": ""}
}
# Define task metadata (icons, names, descriptions)
TASK_METADATA_GENERATIVE = {
"LS": {"icon": "🔄", "name": "Lexical Substitution", "tooltip": ""},
"SU": {"icon": "📝", "name": "Summarization", "tooltip": ""},
"NER": {"icon": "🏷️", "name": "Named Entity Recognition", "tooltip": ""},
"REL": {"icon": "🔗", "name": "Relation Extraction", "tooltip": ""},
}
def restart_space():
"""Restart the Hugging Face space."""
API.restart_space(repo_id=REPO_ID)
def init_leaderboard(dataframe, default_selection=None, hidden_columns=None):
"""
Initialize and return the leaderboard when it is first loaded or when 'benchmark' is selected.
The table is sorted based on the "Avg. Combined Performance" field.
"""
if dataframe is None or dataframe.empty:
raise ValueError("Leaderboard DataFrame is empty or None.")
#print("????????????????????????????????", mean_of_max_per_field(dataframe))
sorted_dataframe = dataframe.sort_values(by="Avg. Comb. Perf. ⬆️", ascending=False)
sorted_dataframe = sorted_dataframe.reset_index(drop=True)
sorted_dataframe["rank"] = sorted_dataframe.index + 1
# Flag per sapere se la medaglia è già stata assegnata per categoria e tipo
large_medal_fs_assigned = False
medium_medal_fs_assigned = False
small_medal_fs_assigned = False
large_medal_0shot_assigned = False
medium_medal_0shot_assigned = False
small_medal_0shot_assigned = False
# Lista temporanea per salvare i nuovi valori della colonna Model
new_model_column = []
for _, row in sorted_dataframe.iterrows():
if row['IS_FS']: # 5-Few-Shot
if row["#Params (B)"] > 50 and not large_medal_fs_assigned:
new_model_column.append(f"{row['Model']} 1️⃣0️⃣0️⃣🅱️🏆")
large_medal_fs_assigned = True
elif 10 < row["#Params (B)"] <= 50 and not medium_medal_fs_assigned:
new_model_column.append(f"{row['Model']} 5️⃣0️⃣🅱️🏆")
medium_medal_fs_assigned = True
elif row["#Params (B)"] <= 10 and not small_medal_fs_assigned:
new_model_column.append(f"{row['Model']} 1️⃣0️⃣🅱️🏆")
small_medal_fs_assigned = True
else:
new_model_column.append(row["Model"])
else: # 0-Shot
if row["#Params (B)"] > 50 and not large_medal_0shot_assigned:
new_model_column.append(f"{row['Model']} 1️⃣0️⃣0️⃣🅱️🎖️")
large_medal_0shot_assigned = True
elif 10 < row["#Params (B)"] <= 50 and not medium_medal_0shot_assigned:
new_model_column.append(f"{row['Model']} 5️⃣0️⃣🅱️🎖️")
medium_medal_0shot_assigned = True
elif row["#Params (B)"] <= 10 and not small_medal_0shot_assigned:
new_model_column.append(f"{row['Model']} 1️⃣0️⃣🅱️🎖️")
small_medal_0shot_assigned = True
else:
new_model_column.append(row["Model"])
# Lista delle colonne da aggiornare
cols_to_update = ["REL Best Prompt Id", "NER Best Prompt Id", "SU Best Prompt Id", "LS Best Prompt Id"]
# Applichiamo la trasformazione
for col in cols_to_update:
dataframe[col] = dataframe[col].replace({1: 7, 2: 8})
# Aggiorna la colonna Model
sorted_dataframe["Model"] = new_model_column
field_list = fields(AutoEvalColumn)
return Leaderboard(
value=sorted_dataframe,
datatype=[c.type for c in field_list],
#select_columns=SelectColumns(
# default_selection=default_selection or [c.name for c in field_list if c.displayed_by_default],
# cant_deselect=[c.name for c in field_list if c.never_hidden],
# label="Select Columns to Display:",
#),
search_columns=[AutoEvalColumn.model.name, AutoEvalColumn.license.name],
hide_columns=hidden_columns or [c.name for c in field_list if c.hidden],
filter_columns=[
ColumnFilter(AutoEvalColumn.fewshot_symbol.name, type="checkboxgroup", label="N-Shot Learning (FS)"),
#ColumnFilter(AutoEvalColumn.fewshot_symbol.name, type="checkboxgroup", label="N-Few-Shot Learning (FS)",
# default=[["0️⃣", "0️⃣"]]),
ColumnFilter(AutoEvalColumn.params.name, type="slider", min=0, max = 100, default = [0,100], label="Select the number of parameters (B)"),
],
#filter_columns=[
# ColumnFilter("IS_FS", type="checkbox", default=False, label="5-Few-Shot")
# #ColumnFilter("FS", type="dropdown", label="5-Few-Shot")
#],
bool_checkboxgroup_label="Evaluation Mode",
interactive=False,
)
def update_task_leaderboard(dataframe, default_selection=None, hidden_columns=None):
"""
Update and return the leaderboard when a specific task is selected.
The table is sorted based on the "Combined Performance" field.
"""
if dataframe is None or dataframe.empty:
raise ValueError("Leaderboard DataFrame is empty or None.")
sorted_dataframe = dataframe.sort_values(by="Combined Performance", ascending=False)
# aggiungo la colonna rank in base alla posizione
sorted_dataframe = sorted_dataframe.reset_index(drop=True)
sorted_dataframe["rank"] = sorted_dataframe.index + 1
# Flag per sapere se la medaglia è già stata assegnata per categoria e tipo
large_medal_fs_assigned = False
medium_medal_fs_assigned = False
small_medal_fs_assigned = False
large_medal_0shot_assigned = False
medium_medal_0shot_assigned = False
small_medal_0shot_assigned = False
# Lista temporanea per salvare i nuovi valori della colonna Model
new_model_column = []
for _, row in sorted_dataframe.iterrows():
if row['IS_FS']: # 5-Few-Shot
if row["#Params (B)"] > 30 and not large_medal_fs_assigned:
new_model_column.append(f"{row['Model']} 7️⃣0️⃣🅱️🏆")
large_medal_fs_assigned = True
elif 10 < row["#Params (B)"] <= 30 and not medium_medal_fs_assigned:
new_model_column.append(f"{row['Model']} 3️⃣0️⃣🅱️🏆")
medium_medal_fs_assigned = True
elif row["#Params (B)"] <= 10 and not small_medal_fs_assigned:
new_model_column.append(f"{row['Model']} 1️⃣0️⃣🅱️🏆")
small_medal_fs_assigned = True
else:
new_model_column.append(row["Model"])
else: # 0-Shot
if row["#Params (B)"] > 30 and not large_medal_0shot_assigned:
new_model_column.append(f"{row['Model']} 7️⃣0️⃣🅱️🎖️")
large_medal_0shot_assigned = True
elif 10 < row["#Params (B)"] <= 30 and not medium_medal_0shot_assigned:
new_model_column.append(f"{row['Model']} 3️⃣0️⃣🅱️🎖️")
medium_medal_0shot_assigned = True
elif row["#Params (B)"] <= 10 and not small_medal_0shot_assigned:
new_model_column.append(f"{row['Model']} 1️⃣0️⃣🅱️🎖️")
small_medal_0shot_assigned = True
else:
new_model_column.append(row["Model"])
# Aggiorna la colonna Model
sorted_dataframe["Model"] = new_model_column
pd.set_option('display.max_colwidth', None)
#print("========================", dataframe['Model'])
#print(sorted_dataframe['Combined Performance'])
field_list = fields(AutoEvalColumn)
return Leaderboard(
value=sorted_dataframe,
#datatype=[c.type for c in field_list],
datatype=[c.type for c in field_list] + [int],
#select_columns=SelectColumns(
# default_selection=default_selection or [c.name for c in field_list if c.displayed_by_default],
# cant_deselect=[c.name for c in field_list if c.never_hidden],
# label="Select Columns to Display:",
#),
search_columns=[AutoEvalColumn.model.name, AutoEvalColumn.license.name],
hide_columns=hidden_columns or [c.name for c in field_list if c.hidden],
filter_columns=[
ColumnFilter(AutoEvalColumn.fewshot_symbol.name, type="checkboxgroup", label="N-Shot Learning (FS)"),
ColumnFilter(AutoEvalColumn.params.name, type="slider", min=0, max=100, default=[0, 100],
label="Select the number of parameters (B)"),
],
bool_checkboxgroup_label="Evaluation Mode",
interactive=False
)
'''
# Helper function for leaderboard initialization
def init_leaderboard(dataframe, default_selection=None, hidden_columns=None):
"""Initialize and return a leaderboard."""
if dataframe is None or dataframe.empty:
raise ValueError("Leaderboard DataFrame is empty or None.")
return Leaderboard(
value=dataframe,
datatype=[c.type for c in fields(AutoEvalColumn)],
select_columns=SelectColumns(
default_selection=default_selection or [c.name for c in fields(AutoEvalColumn) if c.displayed_by_default],
cant_deselect=[c.name for c in fields(AutoEvalColumn) if c.never_hidden],
label="Select Columns to Display:",
),
search_columns=[AutoEvalColumn.model.name, AutoEvalColumn.license.name],
hide_columns=hidden_columns or [c.name for c in fields(AutoEvalColumn) if c.hidden],
filter_columns=[
ColumnFilter(AutoEvalColumn.fewshot_type.name, type="checkboxgroup", label="N-Few-Shot Learning (FS)"),
ColumnFilter(AutoEvalColumn.params.name, type="slider", min=0, max=150, label="Select the number of parameters (B)"),
],
bool_checkboxgroup_label="Hide models",
interactive=False,
)
'''
def download_snapshot(repo, local_dir):
"""Try to download a snapshot from Hugging Face Hub."""
try:
print(f"Downloading from {repo} to {local_dir}...")
snapshot_download(repo_id=repo, local_dir=local_dir, repo_type="dataset", tqdm_class=None, etag_timeout=30, token=TOKEN)
except Exception as e:
print(f"Error downloading {repo}: {e}")
restart_space()
# Initialize the app by downloading snapshots
download_snapshot(QUEUE_REPO, EVAL_REQUESTS_PATH)
download_snapshot(RESULTS_REPO, EVAL_RESULTS_PATH)
# Load leaderboard data
LEADERBOARD_DF = get_leaderboard_df(EVAL_RESULTS_PATH, EVAL_REQUESTS_PATH, COLS, BENCHMARK_COLS)
finished_eval_queue_df, running_eval_queue_df, pending_eval_queue_df = get_evaluation_queue_df(EVAL_REQUESTS_PATH, EVAL_COLS)
#print(LEADERBOARD_DF.columns.tolist())
theoretical_max_combined_perf = mean_of_max_per_field(LEADERBOARD_DF)
# Prepare the main interface
demo = gr.Blocks(css=custom_css)
with demo:
#gr.HTML(TITLE)
gr.HTML(
"""
<div style="display: flex; align-items: center; position: relative; width: 100%; height: 60px; padding: 10px 0;">
<h1 style="
margin: 0 auto;
font-weight: 900;
font-size: 2.5em;
letter-spacing: 2px;
text-transform: uppercase;
background: linear-gradient(90deg, #1f77b4, #00c6ff);
-webkit-background-clip: text;
-webkit-text-fill-color: transparent;
text-shadow: 2px 2px 8px rgba(0,0,0,0.2);
">
EVALITA-LLM Leaderboard
</h1>
<a href="https://huggingface.co/spaces/mii-llm/open_ita_llm_leaderboard" target="_blank"
style="position: absolute; right: 0; display: inline-flex; align-items: center; gap: 6px; text-decoration: none; color: #1f77b4; font-weight: 600;">
<!-- Icona stilizzata -->
<svg xmlns="http://www.w3.org/2000/svg" width="22" height="22" fill="#1f77b4" viewBox="0 0 24 24">
<path d="M3.9 12a5 5 0 0 1 7.07-7.07l1.41 1.41-1.41 1.41-1.42-1.42a3 3 0 1 0 4.24 4.24l3.54-3.54a5 5 0 0 1-7.07 7.07l-1.41-1.41 1.41-1.41 1.42 1.42z"/>
<path d="M20.1 12a5 5 0 0 1-7.07 7.07l-1.41-1.41 1.41-1.41 1.42 1.42a3 3 0 1 0-4.24-4.24l-3.54 3.54a5 5 0 0 1 7.07-7.07l1.41 1.41-1.41 1.41-1.42-1.42z"/>
</svg>
Open Italian LLM Leaderboard
</a>
</div>
"""
)
gr.Markdown(INTRODUCTION_TEXT, elem_classes="markdown-text")
with gr.Tabs(elem_classes="tab-buttons") as tabs:
# Main leaderboard tab
with gr.TabItem("🏅 Benchmark"):
leaderboard = init_leaderboard(
LEADERBOARD_DF,
default_selection=['rank', 'FS', 'Model', "Avg. Comb. Perf. ⬆️", "TE", "SA", "HS", "AT", "WIC", "FAQ", "LS", "SU", "NER", "REL"],
hidden_columns=[col for col in LEADERBOARD_DF.columns if col not in ['rank', 'FS', 'Model', "Avg. Comb. Perf. ⬆️", "TE", "SA", "HS", "AT", "WIC", "FAQ", "LS", "SU", "NER", "REL"]]
)
gr.HTML(
f"""
<div style="
border: 2px solid #1f77b4;
border-radius: 10px;
padding: 10px;
background-color: #f0f8ff;
font-weight: bold;
font-size: 14px;
display: inline-block;
">
Theoretical performance of a model that scores the highest on every individual task: <span style="color:#d62728; font-size:18px;">{theoretical_max_combined_perf:.2f}</span>
</div>
"""
)
with gr.TabItem("📈 Charts"):
#gr.Plot(value=line_chart(LEADERBOARD_DF), label="Andamento di esempio")
#gr.Plot(value=line_chart_interactive_test(), label="Andamento interattivo")
gr.Plot(value=line_chart(LEADERBOARD_DF))
gr.Plot(value=boxplot_per_task(LEADERBOARD_DF, BASELINES))
gr.Plot(value=boxplot_prompts_per_task(LEADERBOARD_DF))
# About tab
with gr.TabItem("📝 About"):
gr.Markdown(LLM_BENCHMARKS_TEXT, elem_classes="markdown-text")
# About tab
with gr.TabItem("║", interactive=False):
gr.Markdown("", elem_classes="markdown-text")
# Task-specific leaderboards
for task, metadata in TASK_METADATA_MULTIPLECHOICE.items():
with gr.TabItem(f"{metadata['icon']}{task}"):
task_description = TASK_DESCRIPTIONS.get(task, "Description not available.")
gr.Markdown(task_description, elem_classes="markdown-text")
leaderboard = update_task_leaderboard(
LEADERBOARD_DF.rename(columns={f"{task} Prompt Average": "Prompt Average", f"{task} Prompt Std": "Prompt Std", f"{task} Best Prompt": "Best Prompt", f"{task} Best Prompt Id": "Best Prompt Id", task: "Combined Performance"}),
default_selection=['rank', 'FS', 'Model', 'Combined Performance', 'Prompt Average', 'Prompt Std', 'Best Prompt', 'Best Prompt Id'],
hidden_columns=[col for col in LEADERBOARD_DF.columns if col not in ['rank', 'FS', 'Model', 'Combined Performance', 'Prompt Average', 'Prompt Std', 'Best Prompt', 'Best Prompt Id']]
)
# About tab
with gr.TabItem("│", interactive=False):
gr.Markdown("", elem_classes="markdown-text")
# Task-specific leaderboards
for task, metadata in TASK_METADATA_GENERATIVE.items():
with gr.TabItem(f"{metadata['icon']}{task}"):
task_description = TASK_DESCRIPTIONS.get(task, "Description not available.")
gr.Markdown(task_description, elem_classes="markdown-text")
leaderboard = update_task_leaderboard(
LEADERBOARD_DF.rename(columns={f"{task} Prompt Average": "Prompt Average",
f"{task} Prompt Std": "Prompt Std",
f"{task} Best Prompt": "Best Prompt",
f"{task} Best Prompt Id": "Best Prompt Id",
task: "Combined Performance"}),
default_selection=['rank', 'FS', 'Model', 'Combined Performance', 'Prompt Average', 'Prompt Std', 'Best Prompt',
'Best Prompt Id'],
hidden_columns=[col for col in LEADERBOARD_DF.columns if
col not in ['rank', 'FS', 'Model', 'Combined Performance', 'Prompt Average', 'Prompt Std',
'Best Prompt', 'Best Prompt Id']]
)
# Citation section
with gr.Accordion("📙 Citation", open=False):
gr.Textbox(value=CITATION_BUTTON_TEXT, label=CITATION_BUTTON_LABEL, lines=20, elem_id="citation-button", show_copy_button=True)
with gr.Accordion("📙 Credits", open=False):
gr.Markdown(
"""
**This project has benefited from the following support:**
- 🧠 **Codebase**: Based on and extended from the Open Italian LLM Leaderboard, developed by **Alessandro Ercolani** and **Samuele Colombo**. We warmly thank them for their invaluable support and guidance in implementing this leaderboard.
- 💶 **Funding**: Partially supported by the PNRR project **FAIR - Future AI Research (PE00000013)**, under the NRRP MUR program funded by **NextGenerationEU**.
- 🖥️ **Computation**: We gratefully acknowledge **CINECA** for granting access to the **LEONARDO** supercomputer.
"""
)
# Background job to restart space
scheduler = BackgroundScheduler()
scheduler.add_job(restart_space, "interval", seconds=1800)
scheduler.start()
# Launch the app with concurrent queueing
demo.queue(default_concurrency_limit=40).launch(debug=True, # Enable Gradio debug mode
show_error=True) |