Add theoretical performance of a model that scores the highest on every individual task
Browse files- app.py +95 -11
- src/display/utils.py +1 -0
- src/leaderboard/read_evals.py +4 -1
app.py
CHANGED
@@ -17,6 +17,32 @@ import plotly.express as px
|
|
17 |
import plotly.graph_objects as go
|
18 |
|
19 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
20 |
def line_chart(dataframe):
|
21 |
# Separiamo i dati in base a IS_FS
|
22 |
df_true = dataframe[dataframe['IS_FS'] == True]
|
@@ -44,7 +70,7 @@ def line_chart(dataframe):
|
|
44 |
x=x_true,
|
45 |
y=y_true,
|
46 |
mode='markers', # solo marker, niente testo
|
47 |
-
name='5-
|
48 |
marker=dict(color='red', size=10),
|
49 |
hovertemplate='<b>%{customdata}</b><br>#Params: %{x}<br>Performance: %{y}<extra></extra>',
|
50 |
customdata=labels_true # tutte le informazioni sul hover
|
@@ -78,6 +104,8 @@ def line_chart(dataframe):
|
|
78 |
|
79 |
|
80 |
|
|
|
|
|
81 |
# Define task metadata (icons, names, descriptions)
|
82 |
TASK_METADATA_MULTIPLECHOICE = {
|
83 |
"TE": {"icon": "📊", "name": "Textual Entailment", "tooltip": ""},
|
@@ -109,6 +137,8 @@ def init_leaderboard(dataframe, default_selection=None, hidden_columns=None):
|
|
109 |
if dataframe is None or dataframe.empty:
|
110 |
raise ValueError("Leaderboard DataFrame is empty or None.")
|
111 |
|
|
|
|
|
112 |
sorted_dataframe = dataframe.sort_values(by="Avg. Comb. Perf. ⬆️", ascending=False)
|
113 |
|
114 |
sorted_dataframe = sorted_dataframe.reset_index(drop=True)
|
@@ -168,10 +198,10 @@ def init_leaderboard(dataframe, default_selection=None, hidden_columns=None):
|
|
168 |
search_columns=[AutoEvalColumn.model.name, AutoEvalColumn.license.name],
|
169 |
hide_columns=hidden_columns or [c.name for c in field_list if c.hidden],
|
170 |
filter_columns=[
|
171 |
-
ColumnFilter(AutoEvalColumn.fewshot_symbol.name, type="checkboxgroup", label="N-
|
172 |
#ColumnFilter(AutoEvalColumn.fewshot_symbol.name, type="checkboxgroup", label="N-Few-Shot Learning (FS)",
|
173 |
# default=[["0️⃣", "0️⃣"]]),
|
174 |
-
|
175 |
],
|
176 |
#filter_columns=[
|
177 |
# ColumnFilter("IS_FS", type="checkbox", default=False, label="5-Few-Shot")
|
@@ -195,13 +225,46 @@ def update_task_leaderboard(dataframe, default_selection=None, hidden_columns=No
|
|
195 |
sorted_dataframe = sorted_dataframe.reset_index(drop=True)
|
196 |
sorted_dataframe["rank"] = sorted_dataframe.index + 1
|
197 |
|
198 |
-
#
|
199 |
-
|
200 |
-
|
201 |
-
|
202 |
-
|
203 |
-
|
204 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
205 |
|
206 |
pd.set_option('display.max_colwidth', None)
|
207 |
#print("========================", dataframe['Model'])
|
@@ -222,7 +285,9 @@ def update_task_leaderboard(dataframe, default_selection=None, hidden_columns=No
|
|
222 |
search_columns=[AutoEvalColumn.model.name, AutoEvalColumn.license.name],
|
223 |
hide_columns=hidden_columns or [c.name for c in field_list if c.hidden],
|
224 |
filter_columns=[
|
225 |
-
ColumnFilter(AutoEvalColumn.fewshot_symbol.name, type="checkboxgroup", label="N-
|
|
|
|
|
226 |
],
|
227 |
bool_checkboxgroup_label="Evaluation Mode",
|
228 |
interactive=False
|
@@ -273,6 +338,8 @@ LEADERBOARD_DF = get_leaderboard_df(EVAL_RESULTS_PATH, EVAL_REQUESTS_PATH, COLS,
|
|
273 |
finished_eval_queue_df, running_eval_queue_df, pending_eval_queue_df = get_evaluation_queue_df(EVAL_REQUESTS_PATH, EVAL_COLS)
|
274 |
#print(LEADERBOARD_DF.columns.tolist())
|
275 |
|
|
|
|
|
276 |
# Prepare the main interface
|
277 |
demo = gr.Blocks(css=custom_css)
|
278 |
with demo:
|
@@ -306,6 +373,22 @@ with demo:
|
|
306 |
hidden_columns=[col for col in LEADERBOARD_DF.columns if col not in ['rank', 'FS', 'Model', "Avg. Comb. Perf. ⬆️", "TE", "SA", "HS", "AT", "WIC", "FAQ", "LS", "SU", "NER", "REL"]]
|
307 |
)
|
308 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
309 |
with gr.TabItem("📈 Charts"):
|
310 |
#gr.Plot(value=line_chart(LEADERBOARD_DF), label="Andamento di esempio")
|
311 |
#gr.Plot(value=line_chart_interactive_test(), label="Andamento interattivo")
|
@@ -319,6 +402,7 @@ with demo:
|
|
319 |
with gr.TabItem("║", interactive=False):
|
320 |
gr.Markdown("", elem_classes="markdown-text")
|
321 |
|
|
|
322 |
# Task-specific leaderboards
|
323 |
for task, metadata in TASK_METADATA_MULTIPLECHOICE.items():
|
324 |
|
|
|
17 |
import plotly.graph_objects as go
|
18 |
|
19 |
|
20 |
+
def mean_of_max_per_field(df):
|
21 |
+
"""
|
22 |
+
Calcola il massimo per ciascun campo e poi la media dei massimi.
|
23 |
+
|
24 |
+
Args:
|
25 |
+
df (pd.DataFrame): DataFrame con colonne TE, SA, HS, AT, WIC, FAQ, LS, SU, NER, REL
|
26 |
+
|
27 |
+
Returns:
|
28 |
+
float: media dei valori massimi dei campi
|
29 |
+
"""
|
30 |
+
fields = ["TE", "SA", "HS", "AT", "WIC", "FAQ", "LS", "SU", "NER", "REL"]
|
31 |
+
|
32 |
+
# Controlla che tutte le colonne esistano nel DataFrame
|
33 |
+
missing = [f for f in fields if f not in df.columns]
|
34 |
+
if missing:
|
35 |
+
raise ValueError(f"Le seguenti colonne mancano nel DataFrame: {missing}")
|
36 |
+
|
37 |
+
# Calcola il massimo per ciascun campo
|
38 |
+
max_values = df[fields].max()
|
39 |
+
|
40 |
+
# Calcola la media dei massimi
|
41 |
+
mean_max = max_values.mean()
|
42 |
+
|
43 |
+
return mean_max
|
44 |
+
|
45 |
+
|
46 |
def line_chart(dataframe):
|
47 |
# Separiamo i dati in base a IS_FS
|
48 |
df_true = dataframe[dataframe['IS_FS'] == True]
|
|
|
70 |
x=x_true,
|
71 |
y=y_true,
|
72 |
mode='markers', # solo marker, niente testo
|
73 |
+
name='5-Shot',
|
74 |
marker=dict(color='red', size=10),
|
75 |
hovertemplate='<b>%{customdata}</b><br>#Params: %{x}<br>Performance: %{y}<extra></extra>',
|
76 |
customdata=labels_true # tutte le informazioni sul hover
|
|
|
104 |
|
105 |
|
106 |
|
107 |
+
|
108 |
+
|
109 |
# Define task metadata (icons, names, descriptions)
|
110 |
TASK_METADATA_MULTIPLECHOICE = {
|
111 |
"TE": {"icon": "📊", "name": "Textual Entailment", "tooltip": ""},
|
|
|
137 |
if dataframe is None or dataframe.empty:
|
138 |
raise ValueError("Leaderboard DataFrame is empty or None.")
|
139 |
|
140 |
+
#print("????????????????????????????????", mean_of_max_per_field(dataframe))
|
141 |
+
|
142 |
sorted_dataframe = dataframe.sort_values(by="Avg. Comb. Perf. ⬆️", ascending=False)
|
143 |
|
144 |
sorted_dataframe = sorted_dataframe.reset_index(drop=True)
|
|
|
198 |
search_columns=[AutoEvalColumn.model.name, AutoEvalColumn.license.name],
|
199 |
hide_columns=hidden_columns or [c.name for c in field_list if c.hidden],
|
200 |
filter_columns=[
|
201 |
+
ColumnFilter(AutoEvalColumn.fewshot_symbol.name, type="checkboxgroup", label="N-Shot Learning (FS)"),
|
202 |
#ColumnFilter(AutoEvalColumn.fewshot_symbol.name, type="checkboxgroup", label="N-Few-Shot Learning (FS)",
|
203 |
# default=[["0️⃣", "0️⃣"]]),
|
204 |
+
ColumnFilter(AutoEvalColumn.params.name, type="slider", min=0, max = 100, default = [0,100], label="Select the number of parameters (B)"),
|
205 |
],
|
206 |
#filter_columns=[
|
207 |
# ColumnFilter("IS_FS", type="checkbox", default=False, label="5-Few-Shot")
|
|
|
225 |
sorted_dataframe = sorted_dataframe.reset_index(drop=True)
|
226 |
sorted_dataframe["rank"] = sorted_dataframe.index + 1
|
227 |
|
228 |
+
# Flag per sapere se la medaglia è già stata assegnata per categoria e tipo
|
229 |
+
large_medal_fs_assigned = False
|
230 |
+
medium_medal_fs_assigned = False
|
231 |
+
small_medal_fs_assigned = False
|
232 |
+
|
233 |
+
large_medal_0shot_assigned = False
|
234 |
+
medium_medal_0shot_assigned = False
|
235 |
+
small_medal_0shot_assigned = False
|
236 |
+
|
237 |
+
# Lista temporanea per salvare i nuovi valori della colonna Model
|
238 |
+
new_model_column = []
|
239 |
+
|
240 |
+
for _, row in sorted_dataframe.iterrows():
|
241 |
+
if row['IS_FS']: # 5-Few-Shot
|
242 |
+
if row["#Params (B)"] > 30 and not large_medal_fs_assigned:
|
243 |
+
new_model_column.append(f"{row['Model']} 7️⃣0️⃣🅱️🏆")
|
244 |
+
large_medal_fs_assigned = True
|
245 |
+
elif 10 < row["#Params (B)"] <= 30 and not medium_medal_fs_assigned:
|
246 |
+
new_model_column.append(f"{row['Model']} 3️⃣0️⃣🅱️🏆")
|
247 |
+
medium_medal_fs_assigned = True
|
248 |
+
elif row["#Params (B)"] <= 10 and not small_medal_fs_assigned:
|
249 |
+
new_model_column.append(f"{row['Model']} 1️⃣0️⃣🅱️🏆")
|
250 |
+
small_medal_fs_assigned = True
|
251 |
+
else:
|
252 |
+
new_model_column.append(row["Model"])
|
253 |
+
else: # 0-Shot
|
254 |
+
if row["#Params (B)"] > 30 and not large_medal_0shot_assigned:
|
255 |
+
new_model_column.append(f"{row['Model']} 7️⃣0️⃣🅱️🎖️")
|
256 |
+
large_medal_0shot_assigned = True
|
257 |
+
elif 10 < row["#Params (B)"] <= 30 and not medium_medal_0shot_assigned:
|
258 |
+
new_model_column.append(f"{row['Model']} 3️⃣0️⃣🅱️🎖️")
|
259 |
+
medium_medal_0shot_assigned = True
|
260 |
+
elif row["#Params (B)"] <= 10 and not small_medal_0shot_assigned:
|
261 |
+
new_model_column.append(f"{row['Model']} 1️⃣0️⃣🅱️🎖️")
|
262 |
+
small_medal_0shot_assigned = True
|
263 |
+
else:
|
264 |
+
new_model_column.append(row["Model"])
|
265 |
+
|
266 |
+
# Aggiorna la colonna Model
|
267 |
+
sorted_dataframe["Model"] = new_model_column
|
268 |
|
269 |
pd.set_option('display.max_colwidth', None)
|
270 |
#print("========================", dataframe['Model'])
|
|
|
285 |
search_columns=[AutoEvalColumn.model.name, AutoEvalColumn.license.name],
|
286 |
hide_columns=hidden_columns or [c.name for c in field_list if c.hidden],
|
287 |
filter_columns=[
|
288 |
+
ColumnFilter(AutoEvalColumn.fewshot_symbol.name, type="checkboxgroup", label="N-Shot Learning (FS)"),
|
289 |
+
ColumnFilter(AutoEvalColumn.params.name, type="slider", min=0, max=100, default=[0, 100],
|
290 |
+
label="Select the number of parameters (B)"),
|
291 |
],
|
292 |
bool_checkboxgroup_label="Evaluation Mode",
|
293 |
interactive=False
|
|
|
338 |
finished_eval_queue_df, running_eval_queue_df, pending_eval_queue_df = get_evaluation_queue_df(EVAL_REQUESTS_PATH, EVAL_COLS)
|
339 |
#print(LEADERBOARD_DF.columns.tolist())
|
340 |
|
341 |
+
theoretical_max_combined_perf = mean_of_max_per_field(LEADERBOARD_DF)
|
342 |
+
|
343 |
# Prepare the main interface
|
344 |
demo = gr.Blocks(css=custom_css)
|
345 |
with demo:
|
|
|
373 |
hidden_columns=[col for col in LEADERBOARD_DF.columns if col not in ['rank', 'FS', 'Model', "Avg. Comb. Perf. ⬆️", "TE", "SA", "HS", "AT", "WIC", "FAQ", "LS", "SU", "NER", "REL"]]
|
374 |
)
|
375 |
|
376 |
+
gr.HTML(
|
377 |
+
f"""
|
378 |
+
<div style="
|
379 |
+
border: 2px solid #1f77b4;
|
380 |
+
border-radius: 10px;
|
381 |
+
padding: 10px;
|
382 |
+
background-color: #f0f8ff;
|
383 |
+
font-weight: bold;
|
384 |
+
font-size: 14px;
|
385 |
+
display: inline-block;
|
386 |
+
">
|
387 |
+
Theoretical performance of a model that scores the highest on every individual task: <span style="color:#d62728; font-size:18px;">{theoretical_max_combined_perf:.2f}</span>
|
388 |
+
</div>
|
389 |
+
"""
|
390 |
+
)
|
391 |
+
|
392 |
with gr.TabItem("📈 Charts"):
|
393 |
#gr.Plot(value=line_chart(LEADERBOARD_DF), label="Andamento di esempio")
|
394 |
#gr.Plot(value=line_chart_interactive_test(), label="Andamento interattivo")
|
|
|
402 |
with gr.TabItem("║", interactive=False):
|
403 |
gr.Markdown("", elem_classes="markdown-text")
|
404 |
|
405 |
+
|
406 |
# Task-specific leaderboards
|
407 |
for task, metadata in TASK_METADATA_MULTIPLECHOICE.items():
|
408 |
|
src/display/utils.py
CHANGED
@@ -48,6 +48,7 @@ auto_eval_column_dict.append(["params", ColumnContent, ColumnContent("#Params (B
|
|
48 |
auto_eval_column_dict.append(["likes", ColumnContent, ColumnContent("Hub ❤️", "number", False)])
|
49 |
auto_eval_column_dict.append(["still_on_hub", ColumnContent, ColumnContent("Available on the hub", "bool", False)])
|
50 |
auto_eval_column_dict.append(["revision", ColumnContent, ColumnContent("Model sha", "str", False, False)])
|
|
|
51 |
|
52 |
# We use make dataclass to dynamically fill the scores from Tasks
|
53 |
AutoEvalColumn = make_dataclass("AutoEvalColumn", auto_eval_column_dict, frozen=True)
|
|
|
48 |
auto_eval_column_dict.append(["likes", ColumnContent, ColumnContent("Hub ❤️", "number", False)])
|
49 |
auto_eval_column_dict.append(["still_on_hub", ColumnContent, ColumnContent("Available on the hub", "bool", False)])
|
50 |
auto_eval_column_dict.append(["revision", ColumnContent, ColumnContent("Model sha", "str", False, False)])
|
51 |
+
#auto_eval_column_dict.append(["submitted_time", ColumnContent, ColumnContent("Submitted time", "date", False)])
|
52 |
|
53 |
# We use make dataclass to dynamically fill the scores from Tasks
|
54 |
AutoEvalColumn = make_dataclass("AutoEvalColumn", auto_eval_column_dict, frozen=True)
|
src/leaderboard/read_evals.py
CHANGED
@@ -7,6 +7,7 @@ from dataclasses import dataclass, field
|
|
7 |
import dateutil
|
8 |
import numpy as np
|
9 |
from typing import Dict, Union
|
|
|
10 |
|
11 |
#from get_model_info import num_params
|
12 |
from src.display.formatting import make_clickable_model
|
@@ -23,6 +24,7 @@ class EvalResult:
|
|
23 |
org: str
|
24 |
model: str
|
25 |
revision: str # commit hash, "" if main
|
|
|
26 |
results: Dict[str, Union[float, int]] # float o int
|
27 |
average_CPS: float
|
28 |
is_5fewshot: bool
|
@@ -119,7 +121,8 @@ class EvalResult:
|
|
119 |
still_on_hub=still_on_hub,
|
120 |
architecture=architecture,
|
121 |
num_params=num_params,
|
122 |
-
rank = 0
|
|
|
123 |
)
|
124 |
|
125 |
'''
|
|
|
7 |
import dateutil
|
8 |
import numpy as np
|
9 |
from typing import Dict, Union
|
10 |
+
from datetime import datetime
|
11 |
|
12 |
#from get_model_info import num_params
|
13 |
from src.display.formatting import make_clickable_model
|
|
|
24 |
org: str
|
25 |
model: str
|
26 |
revision: str # commit hash, "" if main
|
27 |
+
#submitted_time: datetime
|
28 |
results: Dict[str, Union[float, int]] # float o int
|
29 |
average_CPS: float
|
30 |
is_5fewshot: bool
|
|
|
121 |
still_on_hub=still_on_hub,
|
122 |
architecture=architecture,
|
123 |
num_params=num_params,
|
124 |
+
rank = 0,
|
125 |
+
#submitted_time=config.get("submitted_time", ""),
|
126 |
)
|
127 |
|
128 |
'''
|