File size: 25,690 Bytes
cae4d0f
 
 
 
 
 
 
 
 
5b04d4e
cae4d0f
 
5888550
c8225f5
 
 
 
97a28b9
c8225f5
 
6b09246
 
 
 
 
 
 
 
 
 
 
 
97a28b9
 
6b09246
 
 
 
 
 
 
 
 
 
 
 
 
 
97a28b9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c8225f5
 
 
 
 
 
 
56e849d
c8225f5
 
 
 
 
 
56e849d
c8225f5
 
 
 
 
 
 
 
 
 
 
 
6b09246
c8225f5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
97a28b9
c8225f5
 
 
cae4d0f
56e849d
6b09246
 
cae4d0f
7a90675
dbd3b18
 
 
 
 
7a90675
 
 
 
 
dbd3b18
 
 
 
cae4d0f
 
 
 
 
 
ea6af72
 
5888550
 
 
 
ea6af72
 
 
6b09246
 
56e849d
13fe545
 
 
 
56e849d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
13fe545
ea6af72
 
 
13fe545
ea6af72
7a90675
 
 
 
 
ea6af72
 
 
6b09246
5888550
 
6b09246
ea6af72
5888550
 
 
 
 
ea6af72
 
 
5888550
 
 
 
 
 
 
 
 
 
13fe545
 
 
 
6b09246
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
13fe545
c8225f5
 
 
5888550
 
 
 
 
 
13fe545
 
5888550
 
 
 
 
 
 
 
6b09246
 
 
5888550
 
 
 
 
ea6af72
cae4d0f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
dbd3b18
 
cae4d0f
 
 
 
ea6af72
cae4d0f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
13fe545
cae4d0f
6b09246
 
cae4d0f
 
 
490893b
 
 
b2119dc
 
 
 
 
 
 
 
 
 
 
 
 
 
490893b
b2119dc
490893b
b2119dc
490893b
 
 
 
 
 
 
 
cae4d0f
 
 
ea6af72
cae4d0f
7a90675
dbd3b18
cae4d0f
 
56e849d
 
cae4d0f
 
6b09246
 
 
 
 
 
 
 
 
 
 
713729d
6b09246
 
 
 
af6e747
c8225f5
 
 
bf11a73
c8225f5
cae4d0f
 
 
 
7a90675
 
 
 
6b09246
cae4d0f
7a90675
 
cae4d0f
 
 
 
 
5888550
67324c2
13fe545
 
cae4d0f
 
7a90675
 
 
 
 
 
 
 
 
 
5888550
7a90675
67324c2
7a90675
 
 
13fe545
7a90675
 
13fe545
7a90675
 
 
cae4d0f
 
 
 
490893b
 
 
6927b6c
 
 
 
 
 
 
490893b
 
 
cae4d0f
 
 
 
 
 
5888550
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
import gradio as gr
from gradio_leaderboard import Leaderboard, ColumnFilter, SelectColumns
import pandas as pd
from apscheduler.schedulers.background import BackgroundScheduler
from huggingface_hub import snapshot_download
from src.about import CITATION_BUTTON_LABEL, CITATION_BUTTON_TEXT, EVALUATION_QUEUE_TEXT, INTRODUCTION_TEXT, LLM_BENCHMARKS_TEXT, TITLE
from src.tasks import TASK_DESCRIPTIONS, MEASURE_DESCRIPTION
from src.display.css_html_js import custom_css
from src.display.utils import BENCHMARK_COLS, COLS, EVAL_COLS, EVAL_TYPES, AutoEvalColumn, ModelType, fields, WeightType, Precision
from src.envs import API, EVAL_REQUESTS_PATH, EVAL_RESULTS_PATH, QUEUE_REPO, REPO_ID, RESULTS_REPO, TOKEN
from src.populate import get_evaluation_queue_df, get_leaderboard_df
from src.submission.submit import add_new_eval
import random
import matplotlib.pyplot as plt
import re
import plotly.express as px
import plotly.graph_objects as go
import numpy as np


def mean_of_max_per_field(df):
    """

    Calcola il massimo per ciascun campo e poi la media dei massimi.



    Args:

        df (pd.DataFrame): DataFrame con colonne TE, SA, HS, AT, WIC, FAQ, LS, SU, NER, REL



    Returns:

        float: media dei valori massimi dei campi

    """
    fields = ["TE", "SA", "HS", "AT", "WIC", "FAQ", "LS", "SU", "NER", "REL"]

    #print(df.columns)

    # Controlla che tutte le colonne esistano nel DataFrame
    missing = [f for f in fields if f not in df.columns]
    if missing:
        raise ValueError(f"Le seguenti colonne mancano nel DataFrame: {missing}")

    # Calcola il massimo per ciascun campo
    max_values = df[fields].max()

    # Calcola la media dei massimi
    mean_max = max_values.mean()

    return mean_max


def boxplot_per_task(dataframe=None, baselines=None):
    tasks = ["TE", "SA", "HS", "AT", "WIC", "FAQ", "LS", "SU", "NER", "REL"]

    if dataframe is None:
        np.random.seed(42)
        dataframe = pd.DataFrame({
            task: np.random.uniform(0.4, 0.9, 20) * 100
            for task in tasks
        })

    # baseline per ciascun task (se non viene passata, metto random tra 50 e 70)
    if baselines is None:
        baselines = {task: np.random.randint(50, 70) for task in tasks}

    colors = ["#1f77b4", "#ff7f0e", "#2ca02c", "#d62728", "#9467bd",
              "#8c564b", "#e377c2", "#7f7f7f", "#bcbd22", "#17becf"]

    fig = go.Figure()

    for i, task in enumerate(tasks):
        if task in dataframe.columns:
            y_data = dataframe[task].dropna().tolist()

            # boxplot
            fig.add_trace(go.Box(
                y=y_data,
                name=task,
                boxmean="sd",
                marker=dict(color=colors[i], line=dict(width=1)),
                line=dict(color=colors[i]),
                fillcolor=colors[i],
                opacity=0.7,
                hovertemplate=f"<b>{task}</b><br>Accuracy: "+"%{y:.2f}%"+"<extra></extra>",
                width=0.6
            ))

            # baseline per task (se disponibile)
            if task in baselines and baselines[task] is not None:
                # baseline come linea orizzontale
                fig.add_shape(
                    type="line",
                    x0=i-0.3, x1=i+0.3,   # larghezza in corrispondenza del box
                    y0=baselines[task], y1=baselines[task],
                    line=dict(color="black", width=2, dash="dash"),
                    xref="x", yref="y"
                )

                # label con valore baseline
                fig.add_annotation(
                    x=i, y=baselines[task],
                    text=f"{baselines[task]}%",
                    showarrow=False,
                    yshift=10,
                    font=dict(size=10, color="black")
                )

    fig.update_layout(
        title="Distribution of Model Accuracy by Task.",
        xaxis_title="Task",
        yaxis_title="Accuracy (%)",
        template="plotly_white",
        boxmode="group",
        dragmode=False,
        font=dict(family="Arial", size=13),
        margin=dict(b=80),
        annotations = [
            dict(
                text=(
                    "Boxplots show LLM accuracy in zero/few-shot settings. <br>"
                    "Black dashed lines indicate the best-performing supervised models evaluated during EVALITA."
                ),
                xref="paper", yref="paper",
                x=0.5, y=-0.33,
                showarrow=False,
                font=dict(size=12, color="gray")
            )
        ]
    )
    #fig.update_yaxes(fixedrange=True)
    fig.update_yaxes(range=[0, 100], fixedrange=True)

    return fig


# 🔹 Esempio d’uso
BASELINES = {
    "TE":71.00, "SA": 66.38, "HS": 80.88, "AT": 82.40, "WIC": 85.00,
    "LS": 38.82, "SU": 38.91, "NER":88.00, "REL": 62.99
}




def line_chart(dataframe):
    # Separiamo i dati in base a IS_FS
    df_true = dataframe[dataframe['IS_FS'] == True]
    df_false = dataframe[dataframe['IS_FS'] == False]

    # Estrai valori x, y e labels per True e False
    x_true = df_true['#Params (B)'].tolist()
    y_true = df_true['Avg. Comb. Perf. ⬆️'].tolist()
    labels_true = [
        re.search(r'>([^<>/]+/[^<>]+)<', m).group(1).split('/')[-1]
        for m in df_true['Model'].tolist()
    ]

    x_false = df_false['#Params (B)'].tolist()
    y_false = df_false['Avg. Comb. Perf. ⬆️'].tolist()
    labels_false = [
        re.search(r'>([^<>/]+/[^<>]+)<', m).group(1).split('/')[-1]
        for m in df_false['Model'].tolist()
    ]

    fig = go.Figure()

    # Punti IS_FS=True
    fig.add_trace(go.Scatter(
        x=x_true,
        y=y_true,
        mode='markers',  # solo marker, niente testo
        name='5-Shot',
        marker=dict(color='red', size=10),
        hovertemplate='<b>%{customdata}</b><br>#Params: %{x}<br>Performance: %{y}<extra></extra>',
        customdata=labels_true  # tutte le informazioni sul hover
    ))

    # Punti IS_FS=False
    fig.add_trace(go.Scatter(
        x=x_false,
        y=y_false,
        mode='markers',
        name='0-Shot',
        marker=dict(color='blue', size=10),
        hovertemplate='<b>%{customdata}</b><br>#Params: %{x}<br>Performance: %{y}<extra></extra>',
        customdata=labels_false
    ))

    fig.update_layout(
        title="Avg. Combined Performance vs #Params",
        xaxis_title="#Params (B)",
        yaxis_title="Avg. Combined Performance ⬆️",
        template="plotly_white",
        hovermode="closest",
        dragmode=False
    )

    # Disabilita lo zoom e altri controlli
    fig.update_xaxes(fixedrange=True, rangeslider_visible=False)
    fig.update_yaxes(fixedrange=True)
    #fig.update_yaxes(range=[0, 100], fixedrange=True)

    return fig





# Define task metadata (icons, names, descriptions)
TASK_METADATA_MULTIPLECHOICE = {
    "TE": {"icon": "📊", "name": "Textual Entailment", "tooltip": ""},
    "SA": {"icon": "😃", "name": "Sentiment Analysis", "tooltip": ""},
    "HS": {"icon": "⚠️", "name": "Hate Speech", "tooltip": ""},
    "AT": {"icon": "🏥", "name": "Admission Test", "tooltip": ""},
    "WIC": {"icon": "🔤", "name": "Word in Context", "tooltip": ""},
    "FAQ": {"icon": "❓", "name": "Frequently Asked Questions", "tooltip": ""}
}

# Define task metadata (icons, names, descriptions)
TASK_METADATA_GENERATIVE = {
    "LS": {"icon": "🔄", "name": "Lexical Substitution", "tooltip": ""},
    "SU": {"icon": "📝", "name": "Summarization", "tooltip": ""},
    "NER": {"icon": "🏷️", "name": "Named Entity Recognition", "tooltip": ""},
    "REL": {"icon": "🔗", "name": "Relation Extraction", "tooltip": ""},
}

def restart_space():
    """Restart the Hugging Face space."""
    API.restart_space(repo_id=REPO_ID)


def init_leaderboard(dataframe, default_selection=None, hidden_columns=None):
    """

    Initialize and return the leaderboard when it is first loaded or when 'benchmark' is selected.

    The table is sorted based on the "Avg. Combined Performance" field.

    """
    if dataframe is None or dataframe.empty:
        raise ValueError("Leaderboard DataFrame is empty or None.")

    #print("????????????????????????????????", mean_of_max_per_field(dataframe))

    sorted_dataframe = dataframe.sort_values(by="Avg. Comb. Perf. ⬆️", ascending=False)

    sorted_dataframe = sorted_dataframe.reset_index(drop=True)
    sorted_dataframe["rank"] = sorted_dataframe.index + 1

    # Flag per sapere se la medaglia è già stata assegnata per categoria e tipo
    large_medal_fs_assigned = False
    medium_medal_fs_assigned = False
    small_medal_fs_assigned = False

    large_medal_0shot_assigned = False
    medium_medal_0shot_assigned = False
    small_medal_0shot_assigned = False

    # Lista temporanea per salvare i nuovi valori della colonna Model
    new_model_column = []

    for _, row in sorted_dataframe.iterrows():
        if row['IS_FS']:  # 5-Few-Shot
            if row["#Params (B)"] > 30 and not large_medal_fs_assigned:
                new_model_column.append(f"{row['Model']} 7️⃣0️⃣🅱️🏆")
                large_medal_fs_assigned = True
            elif 10 < row["#Params (B)"] <= 30 and not medium_medal_fs_assigned:
                new_model_column.append(f"{row['Model']} 3️⃣0️⃣🅱️🏆")
                medium_medal_fs_assigned = True
            elif row["#Params (B)"] <= 10 and not small_medal_fs_assigned:
                new_model_column.append(f"{row['Model']} 1️⃣0️⃣🅱️🏆")
                small_medal_fs_assigned = True
            else:
                new_model_column.append(row["Model"])
        else:  # 0-Shot
            if row["#Params (B)"] > 30 and not large_medal_0shot_assigned:
                new_model_column.append(f"{row['Model']} 7️⃣0️⃣🅱️🎖️")
                large_medal_0shot_assigned = True
            elif 10 < row["#Params (B)"] <= 30 and not medium_medal_0shot_assigned:
                new_model_column.append(f"{row['Model']} 3️⃣0️⃣🅱️🎖️")
                medium_medal_0shot_assigned = True
            elif row["#Params (B)"] <= 10 and not small_medal_0shot_assigned:
                new_model_column.append(f"{row['Model']} 1️⃣0️⃣🅱️🎖️")
                small_medal_0shot_assigned = True
            else:
                new_model_column.append(row["Model"])

    # Aggiorna la colonna Model
    sorted_dataframe["Model"] = new_model_column

    field_list = fields(AutoEvalColumn)

    return Leaderboard(
        value=sorted_dataframe,
        datatype=[c.type for c in field_list],
        #select_columns=SelectColumns(
        #    default_selection=default_selection or [c.name for c in field_list if c.displayed_by_default],
        #    cant_deselect=[c.name for c in field_list if c.never_hidden],
        #    label="Select Columns to Display:",
        #),
        search_columns=[AutoEvalColumn.model.name, AutoEvalColumn.license.name],
        hide_columns=hidden_columns or [c.name for c in field_list if c.hidden],
        filter_columns=[
            ColumnFilter(AutoEvalColumn.fewshot_symbol.name, type="checkboxgroup", label="N-Shot Learning (FS)"),
            #ColumnFilter(AutoEvalColumn.fewshot_symbol.name, type="checkboxgroup", label="N-Few-Shot Learning (FS)",
            #             default=[["0️⃣", "0️⃣"]]),
            ColumnFilter(AutoEvalColumn.params.name, type="slider", min=0, max = 100, default = [0,100], label="Select the number of parameters (B)"),
        ],
        #filter_columns=[
        #    ColumnFilter("IS_FS", type="checkbox", default=False, label="5-Few-Shot")
        #    #ColumnFilter("FS", type="dropdown", label="5-Few-Shot")
        #],
        bool_checkboxgroup_label="Evaluation Mode",
        interactive=False,
    )

def update_task_leaderboard(dataframe, default_selection=None, hidden_columns=None):
    """

    Update and return the leaderboard when a specific task is selected.

    The table is sorted based on the "Combined Performance" field.

    """
    if dataframe is None or dataframe.empty:
        raise ValueError("Leaderboard DataFrame is empty or None.")

    sorted_dataframe = dataframe.sort_values(by="Combined Performance", ascending=False)

    # aggiungo la colonna rank in base alla posizione
    sorted_dataframe = sorted_dataframe.reset_index(drop=True)
    sorted_dataframe["rank"] = sorted_dataframe.index + 1

    # Flag per sapere se la medaglia è già stata assegnata per categoria e tipo
    large_medal_fs_assigned = False
    medium_medal_fs_assigned = False
    small_medal_fs_assigned = False

    large_medal_0shot_assigned = False
    medium_medal_0shot_assigned = False
    small_medal_0shot_assigned = False

    # Lista temporanea per salvare i nuovi valori della colonna Model
    new_model_column = []

    for _, row in sorted_dataframe.iterrows():
        if row['IS_FS']:  # 5-Few-Shot
            if row["#Params (B)"] > 30 and not large_medal_fs_assigned:
                new_model_column.append(f"{row['Model']} 7️⃣0️⃣🅱️🏆")
                large_medal_fs_assigned = True
            elif 10 < row["#Params (B)"] <= 30 and not medium_medal_fs_assigned:
                new_model_column.append(f"{row['Model']} 3️⃣0️⃣🅱️🏆")
                medium_medal_fs_assigned = True
            elif row["#Params (B)"] <= 10 and not small_medal_fs_assigned:
                new_model_column.append(f"{row['Model']} 1️⃣0️⃣🅱️🏆")
                small_medal_fs_assigned = True
            else:
                new_model_column.append(row["Model"])
        else:  # 0-Shot
            if row["#Params (B)"] > 30 and not large_medal_0shot_assigned:
                new_model_column.append(f"{row['Model']} 7️⃣0️⃣🅱️🎖️")
                large_medal_0shot_assigned = True
            elif 10 < row["#Params (B)"] <= 30 and not medium_medal_0shot_assigned:
                new_model_column.append(f"{row['Model']} 3️⃣0️⃣🅱️🎖️")
                medium_medal_0shot_assigned = True
            elif row["#Params (B)"] <= 10 and not small_medal_0shot_assigned:
                new_model_column.append(f"{row['Model']} 1️⃣0️⃣🅱️🎖️")
                small_medal_0shot_assigned = True
            else:
                new_model_column.append(row["Model"])

    # Aggiorna la colonna Model
    sorted_dataframe["Model"] = new_model_column

    pd.set_option('display.max_colwidth', None)
    #print("========================", dataframe['Model'])

    #print(sorted_dataframe['Combined Performance'])

    field_list = fields(AutoEvalColumn)

    return Leaderboard(
        value=sorted_dataframe,
        #datatype=[c.type for c in field_list],
        datatype=[c.type for c in field_list] + [int],
        #select_columns=SelectColumns(
        #    default_selection=default_selection or [c.name for c in field_list if c.displayed_by_default],
        #    cant_deselect=[c.name for c in field_list if c.never_hidden],
        #    label="Select Columns to Display:",
        #),
        search_columns=[AutoEvalColumn.model.name, AutoEvalColumn.license.name],
        hide_columns=hidden_columns or [c.name for c in field_list if c.hidden],
        filter_columns=[
            ColumnFilter(AutoEvalColumn.fewshot_symbol.name, type="checkboxgroup", label="N-Shot Learning (FS)"),
            ColumnFilter(AutoEvalColumn.params.name, type="slider", min=0, max=100, default=[0, 100],
                         label="Select the number of parameters (B)"),
        ],
        bool_checkboxgroup_label="Evaluation Mode",
        interactive=False
    )

'''

# Helper function for leaderboard initialization

def init_leaderboard(dataframe, default_selection=None, hidden_columns=None):

    """Initialize and return a leaderboard."""

    if dataframe is None or dataframe.empty:

        raise ValueError("Leaderboard DataFrame is empty or None.")



    return Leaderboard(

        value=dataframe,

        datatype=[c.type for c in fields(AutoEvalColumn)],

        select_columns=SelectColumns(

            default_selection=default_selection or [c.name for c in fields(AutoEvalColumn) if c.displayed_by_default],

            cant_deselect=[c.name for c in fields(AutoEvalColumn) if c.never_hidden],

            label="Select Columns to Display:",

        ),

        search_columns=[AutoEvalColumn.model.name, AutoEvalColumn.license.name],

        hide_columns=hidden_columns or [c.name for c in fields(AutoEvalColumn) if c.hidden],

        filter_columns=[

            ColumnFilter(AutoEvalColumn.fewshot_type.name, type="checkboxgroup", label="N-Few-Shot Learning (FS)"),

            ColumnFilter(AutoEvalColumn.params.name, type="slider", min=0, max=150, label="Select the number of parameters (B)"),

        ],

        bool_checkboxgroup_label="Hide models",

        interactive=False,

    )

'''

def download_snapshot(repo, local_dir):
    """Try to download a snapshot from Hugging Face Hub."""
    try:
        print(f"Downloading from {repo} to {local_dir}...")
        snapshot_download(repo_id=repo, local_dir=local_dir, repo_type="dataset", tqdm_class=None, etag_timeout=30, token=TOKEN)
    except Exception as e:
        print(f"Error downloading {repo}: {e}")
        restart_space()


# Initialize the app by downloading snapshots
download_snapshot(QUEUE_REPO, EVAL_REQUESTS_PATH)
download_snapshot(RESULTS_REPO, EVAL_RESULTS_PATH)

# Load leaderboard data
LEADERBOARD_DF = get_leaderboard_df(EVAL_RESULTS_PATH, EVAL_REQUESTS_PATH, COLS, BENCHMARK_COLS)
finished_eval_queue_df, running_eval_queue_df, pending_eval_queue_df = get_evaluation_queue_df(EVAL_REQUESTS_PATH, EVAL_COLS)
#print(LEADERBOARD_DF.columns.tolist())

theoretical_max_combined_perf = mean_of_max_per_field(LEADERBOARD_DF)

# Prepare the main interface
demo = gr.Blocks(css=custom_css)
with demo:
    #gr.HTML(TITLE)
    gr.HTML(
        """

        <div style="display: flex; align-items: center; position: relative; width: 100%; height: 60px; padding: 10px 0;">

            <h1 style="

                margin: 0 auto; 

                font-weight: 900; 

                font-size: 2.5em; 

                letter-spacing: 2px; 

                text-transform: uppercase; 

                background: linear-gradient(90deg, #1f77b4, #00c6ff); 

                -webkit-background-clip: text; 

                -webkit-text-fill-color: transparent; 

                text-shadow: 2px 2px 8px rgba(0,0,0,0.2);

            ">

                EVALITA-LLM Leaderboard

            </h1>

            <a href="https://huggingface.co/spaces/mii-llm/open_ita_llm_leaderboard" target="_blank" 

               style="position: absolute; right: 0; display: inline-flex; align-items: center; gap: 6px; text-decoration: none; color: #1f77b4; font-weight: 600;">

                <!-- Icona stilizzata -->

                <svg xmlns="http://www.w3.org/2000/svg" width="22" height="22" fill="#1f77b4" viewBox="0 0 24 24">

                    <path d="M3.9 12a5 5 0 0 1 7.07-7.07l1.41 1.41-1.41 1.41-1.42-1.42a3 3 0 1 0 4.24 4.24l3.54-3.54a5 5 0 0 1-7.07 7.07l-1.41-1.41 1.41-1.41 1.42 1.42z"/>

                    <path d="M20.1 12a5 5 0 0 1-7.07 7.07l-1.41-1.41 1.41-1.41 1.42 1.42a3 3 0 1 0-4.24-4.24l-3.54 3.54a5 5 0 0 1 7.07-7.07l1.41 1.41-1.41 1.41-1.42-1.42z"/>

                </svg>

                Open Italian LLM Leaderboard

            </a>

        </div>

        """
    )
    gr.Markdown(INTRODUCTION_TEXT, elem_classes="markdown-text")

    with gr.Tabs(elem_classes="tab-buttons") as tabs:

        # Main leaderboard tab
        with gr.TabItem("🏅 Benchmark"):

            leaderboard = init_leaderboard(
                LEADERBOARD_DF,
                default_selection=['rank', 'FS', 'Model', "Avg. Comb. Perf. ⬆️", "TE", "SA", "HS", "AT", "WIC", "FAQ", "LS", "SU", "NER", "REL"],
                hidden_columns=[col for col in LEADERBOARD_DF.columns if col not in ['rank', 'FS', 'Model', "Avg. Comb. Perf. ⬆️", "TE", "SA", "HS", "AT", "WIC", "FAQ", "LS", "SU", "NER", "REL"]]
            )

            gr.HTML(
                f"""

                        <div style="

                            border: 2px solid #1f77b4;

                            border-radius: 10px;

                            padding: 10px;

                            background-color: #f0f8ff;

                            font-weight: bold;

                            font-size: 14px;

                            display: inline-block;

                        ">

                            Theoretical performance of a model that scores the highest on every individual task: <span style="color:#d62728; font-size:18px;">{theoretical_max_combined_perf:.2f}</span>

                        </div>

                        """
            )

        with gr.TabItem("📈 Charts"):
            #gr.Plot(value=line_chart(LEADERBOARD_DF), label="Andamento di esempio")
            #gr.Plot(value=line_chart_interactive_test(), label="Andamento interattivo")
            gr.Plot(value=line_chart(LEADERBOARD_DF))
            gr.Plot(value=boxplot_per_task(LEADERBOARD_DF, BASELINES))

        # About tab
        with gr.TabItem("📝 About"):
            gr.Markdown(LLM_BENCHMARKS_TEXT, elem_classes="markdown-text")

        # About tab
        with gr.TabItem("║", interactive=False):
            gr.Markdown("", elem_classes="markdown-text")


        # Task-specific leaderboards
        for task, metadata in TASK_METADATA_MULTIPLECHOICE.items():

            with gr.TabItem(f"{metadata['icon']}{task}"):

                task_description = TASK_DESCRIPTIONS.get(task, "Description not available.")
                gr.Markdown(task_description, elem_classes="markdown-text")

                leaderboard = update_task_leaderboard(
                    LEADERBOARD_DF.rename(columns={f"{task} Prompt Average": "Prompt Average", f"{task} Prompt Std": "Prompt Std", f"{task} Best Prompt": "Best Prompt", f"{task} Best Prompt Id": "Best Prompt Id", task: "Combined Performance"}),
                    default_selection=['rank', 'FS', 'Model', 'Combined Performance', 'Prompt Average', 'Prompt Std', 'Best Prompt', 'Best Prompt Id'],
                    hidden_columns=[col for col in LEADERBOARD_DF.columns if col not in ['rank', 'FS', 'Model', 'Combined Performance', 'Prompt Average', 'Prompt Std', 'Best Prompt', 'Best Prompt Id']]
                )

        # About tab
        with gr.TabItem("│", interactive=False):
            gr.Markdown("", elem_classes="markdown-text")

        # Task-specific leaderboards
        for task, metadata in TASK_METADATA_GENERATIVE.items():
            with gr.TabItem(f"{metadata['icon']}{task}"):
                task_description = TASK_DESCRIPTIONS.get(task, "Description not available.")
                gr.Markdown(task_description, elem_classes="markdown-text")

                leaderboard = update_task_leaderboard(
                    LEADERBOARD_DF.rename(columns={f"{task} Prompt Average": "Prompt Average",
                                                   f"{task} Prompt Std": "Prompt Std",
                                                   f"{task} Best Prompt": "Best Prompt",
                                                   f"{task} Best Prompt Id": "Best Prompt Id",
                                                   task: "Combined Performance"}),
                    default_selection=['rank', 'FS', 'Model', 'Combined Performance', 'Prompt Average', 'Prompt Std', 'Best Prompt',
                                       'Best Prompt Id'],
                    hidden_columns=[col for col in LEADERBOARD_DF.columns if
                                    col not in ['rank', 'FS', 'Model', 'Combined Performance', 'Prompt Average', 'Prompt Std',
                                                'Best Prompt', 'Best Prompt Id']]
                )

    # Citation section
    with gr.Accordion("📙 Citation", open=False):
        gr.Textbox(value=CITATION_BUTTON_TEXT, label=CITATION_BUTTON_LABEL, lines=20, elem_id="citation-button", show_copy_button=True)

    with gr.Accordion("📙 Credits", open=False):
        gr.Markdown(
            """

    **This project has benefited from the following support:**



    - 🧠 **Codebase**: Based on and extended from the Open Italian LLM Leaderboard, developed by **Alessandro Ercolani** and **Samuele Colombo**. We warmly thank them for their invaluable support and guidance in implementing this leaderboard.



    - 💶 **Funding**: Partially supported by the PNRR project **FAIR - Future AI Research (PE00000013)**, under the NRRP MUR program funded by **NextGenerationEU**.



    - 🖥️ **Computation**: We gratefully acknowledge **CINECA** for granting access to the **LEONARDO** supercomputer.  

            """
        )

# Background job to restart space
scheduler = BackgroundScheduler()
scheduler.add_job(restart_space, "interval", seconds=1800)
scheduler.start()

# Launch the app with concurrent queueing
demo.queue(default_concurrency_limit=40).launch(debug=True,  # Enable Gradio debug mode
        show_error=True)