Spaces:
Sleeping
Sleeping
import streamlit as st | |
import tensorflow as tf | |
import numpy as np | |
import pandas as pd | |
from transformers import * | |
import json | |
import numpy as np | |
import pandas as pd | |
from tqdm import tqdm | |
import os | |
from tensorflow.python.client import device_lib | |
model = TFBertModel.from_pretrained('./huggingface_bert.h5') | |
def sentence_convert_data(data): | |
global tokenizer | |
tokens, masks, segments = [], [], [] | |
token = tokenizer.encode(data, max_length=SEQ_LEN, truncation=True, padding='max_length') | |
num_zeros = token.count(0) | |
mask = [1]*(SEQ_LEN-num_zeros) + [0]*num_zeros | |
segment = [0]*SEQ_LEN | |
tokens.append(token) | |
segments.append(segment) | |
masks.append(mask) | |
tokens = np.array(tokens) | |
masks = np.array(masks) | |
segments = np.array(segments) | |
return [tokens, masks, segments] | |
def movie_evaluation_predict(sentence): | |
data_x = sentence_convert_data(sentence) | |
predict = sentiment_model.predict(data_x) | |
predict_value = np.ravel(predict) | |
predict_answer = np.round(predict_value,0).item() | |
print(predict_value) | |
if predict_answer == 0: | |
st.write("(λΆμ νλ₯ : %.2f) λΆμ μ μΈ μν νκ°μ λλ€." % (1.0-predict_value)) | |
elif predict_answer == 1: | |
st.write("(κΈμ νλ₯ : %.2f) κΈμ μ μΈ μν νκ°μ λλ€." % predict_value) | |