Spaces:
Sleeping
Sleeping
File size: 1,322 Bytes
22acb53 2130106 22acb53 c19ce1c 2130106 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 |
import streamlit as st
import tensorflow as tf
import numpy as np
import pandas as pd
from transformers import *
import json
import numpy as np
import pandas as pd
from tqdm import tqdm
import os
from tensorflow.python.client import device_lib
model = TFBertModel.from_pretrained('./huggingface_bert.h5')
def sentence_convert_data(data):
global tokenizer
tokens, masks, segments = [], [], []
token = tokenizer.encode(data, max_length=SEQ_LEN, truncation=True, padding='max_length')
num_zeros = token.count(0)
mask = [1]*(SEQ_LEN-num_zeros) + [0]*num_zeros
segment = [0]*SEQ_LEN
tokens.append(token)
segments.append(segment)
masks.append(mask)
tokens = np.array(tokens)
masks = np.array(masks)
segments = np.array(segments)
return [tokens, masks, segments]
def movie_evaluation_predict(sentence):
data_x = sentence_convert_data(sentence)
predict = sentiment_model.predict(data_x)
predict_value = np.ravel(predict)
predict_answer = np.round(predict_value,0).item()
print(predict_value)
if predict_answer == 0:
st.write("(λΆμ νλ₯ : %.2f) λΆμ μ μΈ μν νκ°μ
λλ€." % (1.0-predict_value))
elif predict_answer == 1:
st.write("(κΈμ νλ₯ : %.2f) κΈμ μ μΈ μν νκ°μ
λλ€." % predict_value)
|