vukosi's picture
Update app.py
aae664e verified
raw
history blame
15.9 kB
import gradio as gr
import torch
from transformers import M2M100ForConditionalGeneration, M2M100Tokenizer
import pandas as pd
import time
import re
import tempfile
import os
import uuid
# Model loading
model_name = "dsfsi/nso-en-m2m100-gov"
tokenizer = M2M100Tokenizer.from_pretrained(model_name)
model = M2M100ForConditionalGeneration.from_pretrained(model_name)
tokenizer.src_lang = "ns"
model.config.forced_bos_token_id = tokenizer.get_lang_id("en")
# Translation function (single)
def translate_nso_en(text):
if not text.strip():
return "Please enter Northern Sotho (Sepedi) text."
inputs = tokenizer(text, return_tensors="pt", max_length=512, truncation=True)
translated_tokens = model.generate(
**inputs,
max_length=512,
forced_bos_token_id=tokenizer.get_lang_id("en")
)
return tokenizer.decode(translated_tokens[0], skip_special_tokens=True)
# Linguistic analysis
def calculate_metrics(text):
words = text.split()
word_count = len(words)
char_count = len(text)
sentence_count = len([s for s in re.split(r'[.!?]+', text) if s.strip()])
unique_words = len(set(words))
avg_word_length = sum(len(w) for w in words) / word_count if word_count else 0
lexical_div = unique_words / word_count if word_count else 0
return {
'char_count': char_count,
'word_count': word_count,
'sentence_count': sentence_count,
'unique_words': unique_words,
'avg_word_length': avg_word_length,
'lexical_diversity': lexical_div
}
def create_metrics_table(src_metrics, tgt_metrics):
data = {
'Metric': ['Words', 'Characters', 'Sentences', 'Unique Words', 'Avg Word Length', 'Lexical Diversity'],
'Source Text': [
src_metrics.get('word_count', 0),
src_metrics.get('char_count', 0),
src_metrics.get('sentence_count', 0),
src_metrics.get('unique_words', 0),
f"{src_metrics.get('avg_word_length', 0):.1f}",
f"{src_metrics.get('lexical_diversity', 0):.3f}"
],
'Target Text': [
tgt_metrics.get('word_count', 0),
tgt_metrics.get('char_count', 0),
tgt_metrics.get('sentence_count', 0),
tgt_metrics.get('unique_words', 0),
f"{tgt_metrics.get('avg_word_length', 0):.1f}",
f"{tgt_metrics.get('lexical_diversity', 0):.3f}"
]
}
return pd.DataFrame(data)
def translate_and_analyze(text):
if not text.strip():
return "Please enter Northern Sotho (Sepedi) text.", "No analysis available.", create_metrics_table({}, {})
start = time.time()
translated = translate_nso_en(text)
src_metrics = calculate_metrics(text)
tgt_metrics = calculate_metrics(translated)
elapsed = time.time() - start
report = f"""## πŸ“Š Linguistic Analysis Report
### Translation Details
- **Processing Time**: {elapsed:.2f} seconds
### Text Complexity Metrics
| Metric | Source | Target | Ratio |
|--------|--------|--------|-------|
| Word Count | {src_metrics.get('word_count', 0)} | {tgt_metrics.get('word_count', 0)} | {tgt_metrics.get('word_count', 0) / max(src_metrics.get('word_count', 1), 1):.2f} |
| Character Count | {src_metrics.get('char_count', 0)} | {tgt_metrics.get('char_count', 0)} | {tgt_metrics.get('char_count', 0) / max(src_metrics.get('char_count', 1), 1):.2f} |
| Sentence Count | {src_metrics.get('sentence_count', 0)} | {tgt_metrics.get('sentence_count', 0)} | {tgt_metrics.get('sentence_count', 0) / max(src_metrics.get('sentence_count', 1), 1):.2f} |
| Avg Word Length | {src_metrics.get('avg_word_length', 0):.1f} | {tgt_metrics.get('avg_word_length', 0):.1f} | {tgt_metrics.get('avg_word_length', 0) / max(src_metrics.get('avg_word_length', 1), 1):.2f} |
| Lexical Diversity | {src_metrics.get('lexical_diversity', 0):.3f} | {tgt_metrics.get('lexical_diversity', 0):.3f} | {tgt_metrics.get('lexical_diversity', 0) / max(src_metrics.get('lexical_diversity', 0.001), 0.001):.2f} |
"""
table = create_metrics_table(src_metrics, tgt_metrics)
return translated, report, table
# Batch processing
def secure_batch_processing(file_obj):
if file_obj is None:
return "Please upload a file.", pd.DataFrame()
temp_dir = None
try:
session_id = str(uuid.uuid4())
temp_dir = tempfile.mkdtemp(prefix=f"translation_{session_id}_")
file_ext = os.path.splitext(file_obj.name)[1].lower()
if file_ext not in ['.txt', '.csv']:
return "Only .txt and .csv files are supported.", pd.DataFrame()
temp_file_path = os.path.join(temp_dir, f"upload_{session_id}{file_ext}")
import shutil
shutil.copy2(file_obj.name, temp_file_path)
texts = []
if file_ext == '.csv':
df = pd.read_csv(temp_file_path)
if df.empty:
return "The uploaded CSV file is empty.", pd.DataFrame()
texts = df.iloc[:, 0].dropna().astype(str).tolist()
else:
with open(temp_file_path, 'r', encoding='utf-8') as f:
content = f.read()
texts = [line.strip() for line in content.split('\n') if line.strip()]
if not texts:
return "No text found in the uploaded file.", pd.DataFrame()
max_batch_size = 10
if len(texts) > max_batch_size:
texts = texts[:max_batch_size]
warning_msg = f"Processing limited to first {max_batch_size} entries for performance."
else:
warning_msg = ""
results = []
for i, text in enumerate(texts):
if len(text.strip()) == 0:
continue
if len(text) > 1000:
text = text[:1000] + "..."
translated = translate_nso_en(text)
results.append({
'Index': i + 1,
'Original': text[:100] + '...' if len(text) > 100 else text,
'Translation': translated[:100] + '...' if len(translated) > 100 else translated
})
if not results:
return "No valid text entries found to translate.", pd.DataFrame()
results_df = pd.DataFrame(results)
summary = f"Successfully processed {len(results)} text entries."
if warning_msg:
summary = f"{summary} {warning_msg}"
return summary, results_df
except Exception as e:
return f"Error processing file: {str(e)}", pd.DataFrame()
finally:
if temp_dir and os.path.exists(temp_dir):
try:
import shutil
shutil.rmtree(temp_dir)
except Exception as e:
print(f"Warning: Could not clean up temporary directory: {e}")
# Examples
EXAMPLES = [
["Leina la ka ke Vukosi."],
["Ke leboga thuΕ‘o ya gago."],
["Re a go amogela mo Pretoria."],
["Go tloga ka letΕ‘atΕ‘i la lehono, dilo di tlo kaonafala."],
["O swanetΕ‘e go hwetΕ‘a thuΕ‘o ge go kgonega."],
["Ngwana o ya sekolong letΕ‘atΕ‘ing le lengwe le le lengwe."]
]
# Research tools
def detailed_analysis(text):
if not text.strip():
return {}
metrics = calculate_metrics(text)
return {
"basic_metrics": metrics,
"text_length": len(text),
"analysis_completed": True
}
def create_gradio_interface():
with gr.Blocks(
title="πŸ”¬ Northern Sotho-English Linguistic Translation Tool",
theme=gr.themes.Soft(),
css="""
.gradio-container {font-family: 'Segoe UI', Tahoma, Geneva, Verdana, sans-serif;}
.main-header {text-align: center; padding: 2rem 0;}
.dsfsi-logo {text-align: center; margin-bottom: 1rem;}
.dsfsi-logo img {max-width: 300px; height: auto;}
.metric-table {font-size: 0.9em;}
"""
) as demo:
gr.HTML("""
<div class="dsfsi-logo">
<img src="https://www.dsfsi.co.za/images/logo_transparent_expanded.png" alt="DSFSI Logo" />
</div>
<div class="main-header">
<h1>πŸ”¬ Northern Sotho-English Linguistic Translation Tool</h1>
<p style="font-size: 1.1em; color: #666; max-width: 800px; margin: 0 auto;">
AI-powered translation system for Northern Sotho (Sepedi) to English with detailed linguistic analysis, designed for linguists, researchers, and language documentation projects.
</p>
</div>
""")
with gr.Tabs():
with gr.Tab("🌐 Translation & Analysis"):
gr.Markdown("""
### Real-time Translation with Linguistic Analysis
Translate from Northern Sotho (Sepedi) to English and get detailed linguistic insights.
""")
with gr.Row():
with gr.Column(scale=1):
input_text = gr.Textbox(
label="Northern Sotho (Sepedi) Input",
placeholder="Enter text to translate...",
lines=4,
max_lines=10
)
translate_btn = gr.Button("πŸ”„ Translate & Analyze", variant="primary", size="lg")
with gr.Column(scale=1):
output_text = gr.Textbox(
label="Translation (English)",
lines=4,
interactive=False
)
gr.Markdown("### πŸ“š Example Translations")
gr.Examples(
examples=EXAMPLES,
inputs=[input_text],
label="Click an example to try it:"
)
with gr.Accordion("πŸ“Š Detailed Linguistic Analysis", open=False):
analysis_output = gr.Markdown(label="Analysis Report")
with gr.Accordion("πŸ“ˆ Metrics Table", open=False):
metrics_table = gr.Dataframe(
label="Comparative Metrics",
headers=["Metric", "Source Text", "Target Text"],
interactive=False
)
translate_btn.click(
fn=translate_and_analyze,
inputs=input_text,
outputs=[output_text, analysis_output, metrics_table]
)
with gr.Tab("πŸ“ Batch Processing"):
gr.Markdown("""
### Secure Corpus Analysis & Batch Translation
Upload text or CSV files for batch translation and analysis. Files are processed securely and temporarily.
""")
with gr.Row():
with gr.Column():
file_upload = gr.File(
label="Upload File (Max 5MB)",
file_types=[".txt", ".csv"],
type="filepath",
file_count="single"
)
batch_btn = gr.Button("πŸ”„ Process Batch", variant="primary")
gr.Markdown("""
**Supported formats:**
- `.txt` files: One text per line
- `.csv` files: Text in first column
- **Security limits**: Max 10 entries, 1000 chars per text
- **Privacy**: Files are deleted after processing
""")
with gr.Column():
batch_summary = gr.Textbox(
label="Processing Summary",
lines=3,
interactive=False
)
batch_results = gr.Dataframe(
label="Translation Results",
interactive=False,
wrap=True
)
batch_btn.click(
fn=secure_batch_processing,
inputs=file_upload,
outputs=[batch_summary, batch_results]
)
with gr.Tab("πŸ”¬ Research Tools"):
gr.Markdown("""
### Advanced Linguistic Analysis Tools
Analyze text for linguistic features.
""")
with gr.Row():
with gr.Column():
research_text = gr.Textbox(
label="Text for Analysis",
lines=6,
placeholder="Enter Northern Sotho (Sepedi) or English text...",
max_lines=15
)
analyze_btn = gr.Button("πŸ” Analyze Text", variant="primary")
with gr.Column():
research_output = gr.JSON(
label="Detailed Analysis Results"
)
analyze_btn.click(
fn=detailed_analysis,
inputs=research_text,
outputs=research_output
)
gr.Markdown("""
### πŸ—£οΈ About Northern Sotho (Sepedi) Language
**Northern Sotho (Sepedi)** is a Bantu language spoken by millions of people, primarily in:
- πŸ‡ΏπŸ‡¦ **South Africa** – Official language
**Key Linguistic Features:**
- **Language Family**: Niger-Congo β†’ Bantu β†’ Sotho-Tswana
- **Script**: Latin alphabet
- **Characteristics**: Agglutinative, noun-class system
- **ISO Code**: nso (ISO 639-2/3)
""")
gr.Markdown("""
---
### πŸ“š Model Information & Citation
**Model Used:** [`dsfsi/nso-en-m2m100-gov`](https://huggingface.co/dsfsi/nso-en-m2m100-gov)
Based on Meta's M2M100, fine-tuned specifically for Northern Sotho-English by the **Data Science for Social Impact Research Group**.
**Training Data:** Vuk'uzenzele and ZA-gov-multilingual South African corpora.
### πŸ”’ Privacy & Security
- No conversation history stored
- Uploaded files deleted after processing
- All processing in isolated temporary environments
- No user data persistence
### πŸ™ Acknowledgments
We thank **Thapelo Sindani** and **Zion Nia Van Wyk** for their assistance in creating this space.
### πŸ“– Citation
```bibtex
@inproceedings{lastrucci-etal-2023-preparing,
title = "Preparing the Vuk'uzenzele and ZA-gov-multilingual South African multilingual corpora",
author = "Richard Lastrucci and Isheanesu Dzingirai and Jenalea Rajab
and Andani Madodonga and Matimba Shingange and Daniel Njini and Vukosi Marivate",
booktitle = "Proceedings of the Fourth workshop on Resources for African Indigenous Languages (RAIL 2023)",
pages = "18--25",
year = "2023"
}
```
**Links**:
- [DSFSI](https://www.dsfsi.co.za/)
- [Model](https://huggingface.co/dsfsi/nso-en-m2m100-gov)
- [Vuk'uzenzele Data](https://github.com/dsfsi/vukuzenzele-nlp)
- [ZA-gov Data](https://github.com/dsfsi/gov-za-multilingual)
- [Research Feedback](https://docs.google.com/forms/d/e/1FAIpQLSf7S36dyAUPx2egmXbFpnTBuzoRulhL5Elu-N1eoMhaO7v10w/viewform)
---
**Built for the African NLP community**
""")
return demo
if __name__ == "__main__":
demo = create_gradio_interface()
demo.launch(
share=True,
server_name="0.0.0.0",
server_port=7860,
show_error=True
)