File size: 15,881 Bytes
3d4f13a
aae664e
b5f7961
aae664e
 
 
 
 
 
3d4f13a
aae664e
4f63972
ef9b88b
3b68341
92737f3
3b68341
 
aae664e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
92737f3
 
aae664e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
92737f3
aae664e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
92737f3
aae664e
92737f3
 
 
aae664e
 
92737f3
aae664e
 
 
 
 
 
 
 
 
92737f3
aae664e
1335053
aae664e
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
import gradio as gr
import torch
from transformers import M2M100ForConditionalGeneration, M2M100Tokenizer
import pandas as pd
import time
import re
import tempfile
import os
import uuid

# Model loading
model_name = "dsfsi/nso-en-m2m100-gov"
tokenizer = M2M100Tokenizer.from_pretrained(model_name)
model = M2M100ForConditionalGeneration.from_pretrained(model_name)
tokenizer.src_lang = "ns"
model.config.forced_bos_token_id = tokenizer.get_lang_id("en")

# Translation function (single)
def translate_nso_en(text):
    if not text.strip():
        return "Please enter Northern Sotho (Sepedi) text."
    inputs = tokenizer(text, return_tensors="pt", max_length=512, truncation=True)
    translated_tokens = model.generate(
        **inputs,
        max_length=512,
        forced_bos_token_id=tokenizer.get_lang_id("en")
    )
    return tokenizer.decode(translated_tokens[0], skip_special_tokens=True)

# Linguistic analysis
def calculate_metrics(text):
    words = text.split()
    word_count = len(words)
    char_count = len(text)
    sentence_count = len([s for s in re.split(r'[.!?]+', text) if s.strip()])
    unique_words = len(set(words))
    avg_word_length = sum(len(w) for w in words) / word_count if word_count else 0
    lexical_div = unique_words / word_count if word_count else 0
    return {
        'char_count': char_count,
        'word_count': word_count,
        'sentence_count': sentence_count,
        'unique_words': unique_words,
        'avg_word_length': avg_word_length,
        'lexical_diversity': lexical_div
    }

def create_metrics_table(src_metrics, tgt_metrics):
    data = {
        'Metric': ['Words', 'Characters', 'Sentences', 'Unique Words', 'Avg Word Length', 'Lexical Diversity'],
        'Source Text': [
            src_metrics.get('word_count', 0),
            src_metrics.get('char_count', 0),
            src_metrics.get('sentence_count', 0),
            src_metrics.get('unique_words', 0),
            f"{src_metrics.get('avg_word_length', 0):.1f}",
            f"{src_metrics.get('lexical_diversity', 0):.3f}"
        ],
        'Target Text': [
            tgt_metrics.get('word_count', 0),
            tgt_metrics.get('char_count', 0),
            tgt_metrics.get('sentence_count', 0),
            tgt_metrics.get('unique_words', 0),
            f"{tgt_metrics.get('avg_word_length', 0):.1f}",
            f"{tgt_metrics.get('lexical_diversity', 0):.3f}"
        ]
    }
    return pd.DataFrame(data)

def translate_and_analyze(text):
    if not text.strip():
        return "Please enter Northern Sotho (Sepedi) text.", "No analysis available.", create_metrics_table({}, {})
    start = time.time()
    translated = translate_nso_en(text)
    src_metrics = calculate_metrics(text)
    tgt_metrics = calculate_metrics(translated)
    elapsed = time.time() - start
    report = f"""## 📊 Linguistic Analysis Report

### Translation Details
- **Processing Time**: {elapsed:.2f} seconds

### Text Complexity Metrics
| Metric | Source | Target | Ratio |
|--------|--------|--------|-------|
| Word Count | {src_metrics.get('word_count', 0)} | {tgt_metrics.get('word_count', 0)} | {tgt_metrics.get('word_count', 0) / max(src_metrics.get('word_count', 1), 1):.2f} |
| Character Count | {src_metrics.get('char_count', 0)} | {tgt_metrics.get('char_count', 0)} | {tgt_metrics.get('char_count', 0) / max(src_metrics.get('char_count', 1), 1):.2f} |
| Sentence Count | {src_metrics.get('sentence_count', 0)} | {tgt_metrics.get('sentence_count', 0)} | {tgt_metrics.get('sentence_count', 0) / max(src_metrics.get('sentence_count', 1), 1):.2f} |
| Avg Word Length | {src_metrics.get('avg_word_length', 0):.1f} | {tgt_metrics.get('avg_word_length', 0):.1f} | {tgt_metrics.get('avg_word_length', 0) / max(src_metrics.get('avg_word_length', 1), 1):.2f} |
| Lexical Diversity | {src_metrics.get('lexical_diversity', 0):.3f} | {tgt_metrics.get('lexical_diversity', 0):.3f} | {tgt_metrics.get('lexical_diversity', 0) / max(src_metrics.get('lexical_diversity', 0.001), 0.001):.2f} |
"""
    table = create_metrics_table(src_metrics, tgt_metrics)
    return translated, report, table

# Batch processing
def secure_batch_processing(file_obj):
    if file_obj is None:
        return "Please upload a file.", pd.DataFrame()
    temp_dir = None
    try:
        session_id = str(uuid.uuid4())
        temp_dir = tempfile.mkdtemp(prefix=f"translation_{session_id}_")
        file_ext = os.path.splitext(file_obj.name)[1].lower()
        if file_ext not in ['.txt', '.csv']:
            return "Only .txt and .csv files are supported.", pd.DataFrame()
        temp_file_path = os.path.join(temp_dir, f"upload_{session_id}{file_ext}")
        import shutil
        shutil.copy2(file_obj.name, temp_file_path)
        texts = []
        if file_ext == '.csv':
            df = pd.read_csv(temp_file_path)
            if df.empty:
                return "The uploaded CSV file is empty.", pd.DataFrame()
            texts = df.iloc[:, 0].dropna().astype(str).tolist()
        else:
            with open(temp_file_path, 'r', encoding='utf-8') as f:
                content = f.read()
            texts = [line.strip() for line in content.split('\n') if line.strip()]
        if not texts:
            return "No text found in the uploaded file.", pd.DataFrame()
        max_batch_size = 10
        if len(texts) > max_batch_size:
            texts = texts[:max_batch_size]
            warning_msg = f"Processing limited to first {max_batch_size} entries for performance."
        else:
            warning_msg = ""
        results = []
        for i, text in enumerate(texts):
            if len(text.strip()) == 0:
                continue
            if len(text) > 1000:
                text = text[:1000] + "..."
            translated = translate_nso_en(text)
            results.append({
                'Index': i + 1,
                'Original': text[:100] + '...' if len(text) > 100 else text,
                'Translation': translated[:100] + '...' if len(translated) > 100 else translated
            })
        if not results:
            return "No valid text entries found to translate.", pd.DataFrame()
        results_df = pd.DataFrame(results)
        summary = f"Successfully processed {len(results)} text entries."
        if warning_msg:
            summary = f"{summary} {warning_msg}"
        return summary, results_df
    except Exception as e:
        return f"Error processing file: {str(e)}", pd.DataFrame()
    finally:
        if temp_dir and os.path.exists(temp_dir):
            try:
                import shutil
                shutil.rmtree(temp_dir)
            except Exception as e:
                print(f"Warning: Could not clean up temporary directory: {e}")

# Examples
EXAMPLES = [
    ["Leina la ka ke Vukosi."],
    ["Ke leboga thušo ya gago."],
    ["Re a go amogela mo Pretoria."],
    ["Go tloga ka letšatši la lehono, dilo di tlo kaonafala."],
    ["O swanetše go hwetša thušo ge go kgonega."],
    ["Ngwana o ya sekolong letšatšing le lengwe le le lengwe."]
]

# Research tools
def detailed_analysis(text):
    if not text.strip():
        return {}
    metrics = calculate_metrics(text)
    return {
        "basic_metrics": metrics,
        "text_length": len(text),
        "analysis_completed": True
    }

def create_gradio_interface():
    with gr.Blocks(
        title="🔬 Northern Sotho-English Linguistic Translation Tool",
        theme=gr.themes.Soft(),
        css="""
        .gradio-container {font-family: 'Segoe UI', Tahoma, Geneva, Verdana, sans-serif;}
        .main-header {text-align: center; padding: 2rem 0;}
        .dsfsi-logo {text-align: center; margin-bottom: 1rem;}
        .dsfsi-logo img {max-width: 300px; height: auto;}
        .metric-table {font-size: 0.9em;}
        """
    ) as demo:

        gr.HTML("""
        <div class="dsfsi-logo">
            <img src="https://www.dsfsi.co.za/images/logo_transparent_expanded.png" alt="DSFSI Logo" />
        </div>
        <div class="main-header">
            <h1>🔬 Northern Sotho-English Linguistic Translation Tool</h1>
            <p style="font-size: 1.1em; color: #666; max-width: 800px; margin: 0 auto;">
                AI-powered translation system for Northern Sotho (Sepedi) to English with detailed linguistic analysis, designed for linguists, researchers, and language documentation projects.
            </p>
        </div>
        """)

        with gr.Tabs():
            with gr.Tab("🌐 Translation & Analysis"):
                gr.Markdown("""
                ### Real-time Translation with Linguistic Analysis
                Translate from Northern Sotho (Sepedi) to English and get detailed linguistic insights.
                """)
                with gr.Row():
                    with gr.Column(scale=1):
                        input_text = gr.Textbox(
                            label="Northern Sotho (Sepedi) Input",
                            placeholder="Enter text to translate...",
                            lines=4,
                            max_lines=10
                        )
                        translate_btn = gr.Button("🔄 Translate & Analyze", variant="primary", size="lg")
                    with gr.Column(scale=1):
                        output_text = gr.Textbox(
                            label="Translation (English)",
                            lines=4,
                            interactive=False
                        )
                gr.Markdown("### 📚 Example Translations")
                gr.Examples(
                    examples=EXAMPLES,
                    inputs=[input_text],
                    label="Click an example to try it:"
                )
                with gr.Accordion("📊 Detailed Linguistic Analysis", open=False):
                    analysis_output = gr.Markdown(label="Analysis Report")
                with gr.Accordion("📈 Metrics Table", open=False):
                    metrics_table = gr.Dataframe(
                        label="Comparative Metrics",
                        headers=["Metric", "Source Text", "Target Text"],
                        interactive=False
                    )
                translate_btn.click(
                    fn=translate_and_analyze,
                    inputs=input_text,
                    outputs=[output_text, analysis_output, metrics_table]
                )

            with gr.Tab("📁 Batch Processing"):
                gr.Markdown("""
                ### Secure Corpus Analysis & Batch Translation
                Upload text or CSV files for batch translation and analysis. Files are processed securely and temporarily.
                """)
                with gr.Row():
                    with gr.Column():
                        file_upload = gr.File(
                            label="Upload File (Max 5MB)",
                            file_types=[".txt", ".csv"],
                            type="filepath",
                            file_count="single"
                        )
                        batch_btn = gr.Button("🔄 Process Batch", variant="primary")
                        gr.Markdown("""
                        **Supported formats:**
                        - `.txt` files: One text per line
                        - `.csv` files: Text in first column
                        - **Security limits**: Max 10 entries, 1000 chars per text
                        - **Privacy**: Files are deleted after processing
                        """)
                    with gr.Column():
                        batch_summary = gr.Textbox(
                            label="Processing Summary",
                            lines=3,
                            interactive=False
                        )
                        batch_results = gr.Dataframe(
                            label="Translation Results",
                            interactive=False,
                            wrap=True
                        )
                batch_btn.click(
                    fn=secure_batch_processing,
                    inputs=file_upload,
                    outputs=[batch_summary, batch_results]
                )

            with gr.Tab("🔬 Research Tools"):
                gr.Markdown("""
                ### Advanced Linguistic Analysis Tools
                Analyze text for linguistic features.
                """)
                with gr.Row():
                    with gr.Column():
                        research_text = gr.Textbox(
                            label="Text for Analysis",
                            lines=6,
                            placeholder="Enter Northern Sotho (Sepedi) or English text...",
                            max_lines=15
                        )
                        analyze_btn = gr.Button("🔍 Analyze Text", variant="primary")
                    with gr.Column():
                        research_output = gr.JSON(
                            label="Detailed Analysis Results"
                        )
                analyze_btn.click(
                    fn=detailed_analysis,
                    inputs=research_text,
                    outputs=research_output
                )
                gr.Markdown("""
                ### 🗣️ About Northern Sotho (Sepedi) Language
                
                **Northern Sotho (Sepedi)** is a Bantu language spoken by millions of people, primarily in:
                - 🇿🇦 **South Africa** – Official language
                
                **Key Linguistic Features:**
                - **Language Family**: Niger-Congo → Bantu → Sotho-Tswana
                - **Script**: Latin alphabet
                - **Characteristics**: Agglutinative, noun-class system
                - **ISO Code**: nso (ISO 639-2/3)
                """)

        gr.Markdown("""
        ---
        ### 📚 Model Information & Citation

        **Model Used:** [`dsfsi/nso-en-m2m100-gov`](https://huggingface.co/dsfsi/nso-en-m2m100-gov)

        Based on Meta's M2M100, fine-tuned specifically for Northern Sotho-English by the **Data Science for Social Impact Research Group**.

        **Training Data:** Vuk'uzenzele and ZA-gov-multilingual South African corpora.

        ### 🔒 Privacy & Security
        - No conversation history stored
        - Uploaded files deleted after processing
        - All processing in isolated temporary environments
        - No user data persistence

        ### 🙏 Acknowledgments
        We thank **Thapelo Sindani** and **Zion Nia Van Wyk** for their assistance in creating this space.

        ### 📖 Citation
        ```bibtex
        @inproceedings{lastrucci-etal-2023-preparing,
            title = "Preparing the Vuk'uzenzele and ZA-gov-multilingual South African multilingual corpora",
            author = "Richard Lastrucci and Isheanesu Dzingirai and Jenalea Rajab 
                      and Andani Madodonga and Matimba Shingange and Daniel Njini and Vukosi Marivate",
            booktitle = "Proceedings of the Fourth workshop on Resources for African Indigenous Languages (RAIL 2023)",
            pages = "18--25",
            year = "2023"
        }
        ```
        **Links**: 
        - [DSFSI](https://www.dsfsi.co.za/)
        - [Model](https://huggingface.co/dsfsi/nso-en-m2m100-gov)
        - [Vuk'uzenzele Data](https://github.com/dsfsi/vukuzenzele-nlp)
        - [ZA-gov Data](https://github.com/dsfsi/gov-za-multilingual)
        - [Research Feedback](https://docs.google.com/forms/d/e/1FAIpQLSf7S36dyAUPx2egmXbFpnTBuzoRulhL5Elu-N1eoMhaO7v10w/viewform)
        ---
        **Built for the African NLP community**
        """)
    return demo

if __name__ == "__main__":
    demo = create_gradio_interface()
    demo.launch(
        share=True,
        server_name="0.0.0.0",
        server_port=7860,
        show_error=True
    )