classify-rooms / app.py
Vincent Claes
working code
a861406
raw
history blame
4.59 kB
import torch
import gradio as gr
from transformers import AutoProcessor, AutoModel
from pathlib import Path
import numpy as np
from decord import VideoReader
import imageio
FRAME_SAMPLING_RATE = 4
DEFAULT_MODEL = "microsoft/xclip-base-patch16-zero-shot"
processor = AutoProcessor.from_pretrained(DEFAULT_MODEL)
model = AutoModel.from_pretrained(DEFAULT_MODEL)
ROOMS = (
"bathroom,sauna,living room, bedroom,kitchen,toilet,hallway,dressing,attic,basement"
)
examples = [
[
"movies/bathroom.mp4",
ROOMS,
],
]
def sample_frames_from_video_file(
file_path: str, num_frames: int = 16, frame_sampling_rate=1
):
videoreader = VideoReader(file_path)
videoreader.seek(0)
# sample frames
start_idx = 0
end_idx = num_frames * frame_sampling_rate - 1
indices = np.linspace(start_idx, end_idx, num=num_frames, dtype=np.int64)
frames = videoreader.get_batch(indices).asnumpy()
return frames
def get_num_total_frames(file_path: str):
videoreader = VideoReader(file_path)
videoreader.seek(0)
return len(videoreader)
# def convert_frames_to_gif(frames, save_path: str = "frames.gif"):
# converted_frames = frames.astype(np.uint8)
# Path(save_path).parent.mkdir(parents=True, exist_ok=True)
# imageio.mimsave(save_path, converted_frames, fps=8)
# return save_path
# def create_gif_from_video_file(
# file_path: str,
# num_frames: int = 16,
# frame_sampling_rate: int = 1,
# save_path: str = "frames.gif",
# ):
# frames = sample_frames_from_video_file(file_path, num_frames, frame_sampling_rate)
# return convert_frames_to_gif(frames, save_path)
def select_model(model_name):
global processor, model
processor = AutoProcessor.from_pretrained(model_name)
model = AutoModel.from_pretrained(model_name)
def get_frame_sampling_rate(video_path, num_model_input_frames):
# rearrange sampling rate based on video length and model input length
num_total_frames = get_num_total_frames(video_path)
if num_total_frames < FRAME_SAMPLING_RATE * num_model_input_frames:
frame_sampling_rate = num_total_frames // num_model_input_frames
else:
frame_sampling_rate = FRAME_SAMPLING_RATE
return frame_sampling_rate
def predict(video_path, labels_text):
labels = labels_text.split(",")
num_model_input_frames = model.config.vision_config.num_frames
frame_sampling_rate = get_frame_sampling_rate(video_path, num_model_input_frames)
frames = sample_frames_from_video_file(
video_path, num_model_input_frames, frame_sampling_rate
)
# gif_path = convert_frames_to_gif(frames, save_path="video.gif")
inputs = processor(
text=labels, videos=list(frames), return_tensors="pt", padding=True
)
# forward pass
with torch.no_grad():
outputs = model(**inputs)
probs = outputs.logits_per_video[0].softmax(dim=-1).cpu().numpy()
label_to_prob = {}
for ind, label in enumerate(labels):
label_to_prob[label] = float(probs[ind])
# return label_to_prob, gif_path
return label_to_prob
app = gr.Blocks()
with app:
gr.Markdown(
"# **<p align='center'>Classification of Rooms</p>**"
)
gr.Markdown(
"### **<p align='center'>Upload a video of a room and provide a list of type of rooms the model should select from.</p>**"
)
with gr.Row():
with gr.Column():
video_file = gr.Video(label="Video File:", show_label=True)
local_video_labels_text = gr.Textbox(
label="Labels Text:", show_label=True
)
submit_button = gr.Button(value="Predict")
# with gr.Column():
# video_gif = gr.Image(
# label="Input Clip",
# show_label=True,
# )
with gr.Column():
predictions = gr.Label(label="Predictions:", show_label=True)
gr.Markdown("**Examples:**")
# gr.Examples(
# examples,
# [video_file,local_video_labels_text],
# [predictions, video_gif],
# fn=predict,
# cache_examples=True,
# )
submit_button.click(
predict,
inputs=[video_file, local_video_labels_text],
# outputs=[predictions, video_gif],
outputs=predictions,
)
# gr.Markdown(
# """
# \n Created by: Vincent Claes, <a href=\"https://www.meet-drift.ai/\">Drift</a>.
# \n Inspired by: <a href=\"https://huggingface.co/spaces/fcakyon/zero-shot-video-classification\">fcakyon</a>.
# """
# )
app.launch()