File size: 4,594 Bytes
a861406
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
import torch
import gradio as gr
from transformers import AutoProcessor, AutoModel

from pathlib import Path
import numpy as np
from decord import VideoReader
import imageio

FRAME_SAMPLING_RATE = 4
DEFAULT_MODEL = "microsoft/xclip-base-patch16-zero-shot"

processor = AutoProcessor.from_pretrained(DEFAULT_MODEL)
model = AutoModel.from_pretrained(DEFAULT_MODEL)

ROOMS = (
    "bathroom,sauna,living room, bedroom,kitchen,toilet,hallway,dressing,attic,basement"
)
examples = [
    [
        "movies/bathroom.mp4",
        ROOMS,
    ],
]


def sample_frames_from_video_file(
    file_path: str, num_frames: int = 16, frame_sampling_rate=1
):
    videoreader = VideoReader(file_path)
    videoreader.seek(0)

    # sample frames
    start_idx = 0
    end_idx = num_frames * frame_sampling_rate - 1
    indices = np.linspace(start_idx, end_idx, num=num_frames, dtype=np.int64)
    frames = videoreader.get_batch(indices).asnumpy()

    return frames


def get_num_total_frames(file_path: str):
    videoreader = VideoReader(file_path)
    videoreader.seek(0)
    return len(videoreader)


# def convert_frames_to_gif(frames, save_path: str = "frames.gif"):
#     converted_frames = frames.astype(np.uint8)
#     Path(save_path).parent.mkdir(parents=True, exist_ok=True)
#     imageio.mimsave(save_path, converted_frames, fps=8)
#     return save_path


# def create_gif_from_video_file(
#     file_path: str,
#     num_frames: int = 16,
#     frame_sampling_rate: int = 1,
#     save_path: str = "frames.gif",
# ):
#     frames = sample_frames_from_video_file(file_path, num_frames, frame_sampling_rate)
#     return convert_frames_to_gif(frames, save_path)


def select_model(model_name):
    global processor, model
    processor = AutoProcessor.from_pretrained(model_name)
    model = AutoModel.from_pretrained(model_name)

def get_frame_sampling_rate(video_path, num_model_input_frames):
    # rearrange sampling rate based on video length and model input length
    num_total_frames = get_num_total_frames(video_path)
    if num_total_frames < FRAME_SAMPLING_RATE * num_model_input_frames:
        frame_sampling_rate = num_total_frames // num_model_input_frames
    else:
        frame_sampling_rate = FRAME_SAMPLING_RATE
    return frame_sampling_rate

def predict(video_path, labels_text):
    labels = labels_text.split(",")
    num_model_input_frames = model.config.vision_config.num_frames
    frame_sampling_rate = get_frame_sampling_rate(video_path, num_model_input_frames)
    frames = sample_frames_from_video_file(
        video_path, num_model_input_frames, frame_sampling_rate
    )
    # gif_path = convert_frames_to_gif(frames, save_path="video.gif")

    inputs = processor(
        text=labels, videos=list(frames), return_tensors="pt", padding=True
    )
    # forward pass
    with torch.no_grad():
        outputs = model(**inputs)

    probs = outputs.logits_per_video[0].softmax(dim=-1).cpu().numpy()
    label_to_prob = {}
    for ind, label in enumerate(labels):
        label_to_prob[label] = float(probs[ind])

    # return label_to_prob, gif_path
    return label_to_prob


app = gr.Blocks()
with app:
    gr.Markdown(
        "# **<p align='center'>Classification of Rooms</p>**"
    )
    gr.Markdown(
        "### **<p align='center'>Upload a video of a room and provide a list of type of rooms the model should select from.</p>**"

    )

    with gr.Row():
        with gr.Column():
            video_file = gr.Video(label="Video File:", show_label=True)
            local_video_labels_text = gr.Textbox(
                label="Labels Text:", show_label=True
            )
            submit_button = gr.Button(value="Predict")
        # with gr.Column():
        #     video_gif = gr.Image(
        #         label="Input Clip",
        #         show_label=True,
        #     )
        with gr.Column():
            predictions = gr.Label(label="Predictions:", show_label=True)

    gr.Markdown("**Examples:**")
    # gr.Examples(
    #     examples,
    #     [video_file,local_video_labels_text],
    #     [predictions, video_gif],
    #     fn=predict,
    #     cache_examples=True,
    # )
    
    submit_button.click(
        predict,
        inputs=[video_file, local_video_labels_text],
        # outputs=[predictions, video_gif],
        outputs=predictions,
    )
    # gr.Markdown(
    #     """
    #     \n Created by: Vincent Claes, <a href=\"https://www.meet-drift.ai/\">Drift</a>.
    #     \n Inspired by: <a href=\"https://huggingface.co/spaces/fcakyon/zero-shot-video-classification\">fcakyon</a>.
    #     """
    # )

app.launch()