File size: 68,006 Bytes
0a62c81
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fde7ed2
 
0a62c81
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fde7ed2
121b98c
 
fde7ed2
 
121b98c
fde7ed2
 
 
0a62c81
fde7ed2
0a62c81
 
 
 
 
 
 
 
 
121b98c
 
 
 
 
 
 
 
0a62c81
121b98c
 
0a62c81
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
#!/usr/bin/env python3
# -*- coding: utf-8 -*-

"""

PDF Mistral OCR 匯出工具



本程式可將 PDF 文件自動化轉換為 Markdown 格式,包含以下流程:



1. 使用 Mistral OCR 模型辨識 PDF 內文與圖片

2. 將辨識結果組成含圖片的 Markdown 檔

3. 使用 Gemini 模型將英文內容翻譯為台灣繁體中文

4. 匯出 Markdown 檔(原文版 + 翻譯版)與對應圖片



新增功能:

- 處理過程中的檢查點,可以保存中間結果

- Gradio 介面,方便調整參數和選擇輸出格式

"""

# Standard libraries
import os
import json
import base64
import time
import tempfile # Already imported, ensure it's used correctly later
from pathlib import Path
import pickle
import certifi
import shutil # Added for zipping images
os.environ["SSL_CERT_FILE"] = certifi.where()

# Third-party libraries
from IPython.display import Markdown, display
from pydantic import BaseModel
from dotenv import load_dotenv
import gradio as gr

# Mistral AI
from mistralai import Mistral
from mistralai.models import OCRResponse, ImageURLChunk, DocumentURLChunk, TextChunk

# Google Gemini
from google import genai
from google.genai import types

# OpenAI
# Import the library (add 'openai' to requirements.txt)
try:
    from openai import OpenAI
except ImportError:
    print("⚠️ OpenAI library not found. Please install it: pip install openai")
    OpenAI = None # Set to None if import fails

# ===== Pydantic Models =====

class StructuredOCR(BaseModel):
    file_name: str
    topics: list[str]
    languages: str
    ocr_contents: dict

# ===== Utility Functions =====

def retry_with_backoff(func, retries=5, base_delay=1.5):
    """Retry a function with exponential backoff."""
    for attempt in range(retries):
        try:
            return func()
        except Exception as e:
            if "429" in str(e):
                wait_time = base_delay * (2 ** attempt)
                print(f"⚠️ API rate limit hit. Retrying in {wait_time:.1f}s...")
                time.sleep(wait_time)
            else:
                raise e
    raise RuntimeError("❌ Failed after multiple retries.")

def replace_images_in_markdown(markdown_str: str, images_dict: dict) -> str:
    """Replace image placeholders in markdown with base64-encoded images."""
    for img_name, base64_str in images_dict.items():
        markdown_str = markdown_str.replace(
            f"![{img_name}]({img_name})", f"![{img_name}]({base64_str})"
        )
    return markdown_str

def get_combined_markdown(ocr_response: OCRResponse) -> str:
    """Combine OCR text and images into a single markdown document."""
    markdowns: list[str] = []
    for page in ocr_response.pages:
        image_data = {img.id: img.image_base64 for img in page.images}
        markdowns.append(replace_images_in_markdown(page.markdown, image_data))
    return "\n\n".join(markdowns)

def insert_ocr_below_images(markdown_str, ocr_img_map, page_idx):
    """Insert OCR results below images in markdown."""
    for img_id, ocr_text in ocr_img_map.get(page_idx, {}).items():
        markdown_str = markdown_str.replace(
            f"![{img_id}]({img_id})",
            f"![{img_id}]({img_id})\n\n> 📄 Image OCR Result:\n\n```json\n{ocr_text}\n```"
        )
    return markdown_str

def save_images_and_replace_links(markdown_str, images_dict, page_idx, image_folder="images"):
    """Save base64 images to files and update markdown links."""
    os.makedirs(image_folder, exist_ok=True)
    image_id_to_path = {}

    for i, (img_id, base64_str) in enumerate(images_dict.items()):
        img_bytes = base64.b64decode(base64_str.split(",")[-1])
        # 使用相對路徑,僅保留資料夾名稱和檔案名稱
        img_path = f"{os.path.basename(image_folder)}/page_{page_idx+1}_img_{i+1}.png"
        
        # 實際儲存的完整路徑
        full_img_path = os.path.join(image_folder, f"page_{page_idx+1}_img_{i+1}.png")
        with open(full_img_path, "wb") as f:
            f.write(img_bytes)
        image_id_to_path[img_id] = img_path

    for img_id, img_path in image_id_to_path.items():
        markdown_str = markdown_str.replace(
            f"![{img_id}]({img_id})", f"![{img_id}]({img_path})"
        )

    return markdown_str

# ===== Translation Functions =====

# Default translation system prompt
DEFAULT_TRANSLATION_SYSTEM_INSTRUCTION = """

你是一位專業的技術文件翻譯者。請將我提供的英文 Markdown 內容翻譯成**台灣繁體中文**。



**核心要求:**

1.  **翻譯所有英文文字:** 你的主要工作是翻譯內容中的英文敘述性文字(段落、列表、表格等)。

2.  **保持結構與程式碼不變:**

    * **不要**更改任何 Markdown 標記(如 `#`, `*`, `-`, `[]()`, `![]()`, ``` ```, ` `` `, `---`)。

    * **不要**翻譯或修改程式碼區塊 (``` ... ```) 和行內程式碼 (`code`) 裡的任何內容。

    * 若有 JSON,**不要**更改鍵(key),僅翻譯字串值(value)。

3.  **處理專有名詞:** 對於普遍接受的英文技術術語、縮寫或專有名詞(例如 API, SDK, CPU, Google, Python 等),傾向於**保留英文原文**。但請確保翻譯了其他所有非術語的常規英文文字。

4.  **直接輸出結果:** 請直接回傳翻譯後的完整 Markdown 文件,不要添加任何額外說明。

"""

# Updated signature to accept openai_client
def translate_markdown_pages(pages, gemini_client, openai_client, model="gemini-2.0-flash", system_instruction=None):
    """Translate markdown pages using the selected API (Gemini or OpenAI). Yields progress strings and translated page content."""
    if system_instruction is None:
        system_instruction = DEFAULT_TRANSLATION_SYSTEM_INSTRUCTION

    # No longer collecting in a list here, will yield pages directly
    total_pages = len(pages) # Get total pages for progress

    for idx, page in enumerate(pages):
        progress_message = f"🔁 正在翻譯第 {idx+1} / {total_pages} 頁..."
        print(progress_message) # Print to console
        yield progress_message # Yield progress string for Gradio log

        try:
            if model.startswith("gpt-"):
                # --- OpenAI Translation Logic ---
                if not openai_client:
                    error_msg = f"⚠️ OpenAI client not initialized for translation model {model}. Skipping page {idx+1}."
                    print(error_msg)
                    yield error_msg
                    yield f"--- ERROR: OpenAI Client Error for Page {idx+1} ---\n\n{page}"
                    continue # Skip to next page

                print(f"    - Translating using OpenAI model: {model}")
                try:
                    # Construct messages for OpenAI translation
                    # Use the provided system_instruction as the system message
                    messages = [
                        {"role": "system", "content": system_instruction},
                        {"role": "user", "content": page} 
                    ]
                    
                    response = openai_client.chat.completions.create(
                        model=model,
                        messages=messages,
                        temperature=0.1 # Lower temperature for more deterministic translation
                    )
                    translated_md = response.choices[0].message.content.strip()
                except Exception as openai_e:
                    error_msg = f"⚠️ OpenAI 翻譯第 {idx+1} / {total_pages} 頁失敗:{openai_e}"
                    print(error_msg)
                    yield error_msg # Yield error string to Gradio log
                    yield f"--- ERROR: OpenAI Translation Failed for Page {idx+1} ---\n\n{page}"
                    continue # Skip to next page

            elif model.startswith("gemini"):
                # --- Gemini Translation Logic ---
                print(f"    - Translating using Gemini model: {model}")
                response = gemini_client.models.generate_content(
                    model=model,
                    config=types.GenerateContentConfig(
                        system_instruction=system_instruction
                    ),
                    contents=page
                )
                translated_md = response.text.strip()
            
            else:
                # --- Unsupported Model ---
                error_msg = f"⚠️ Unsupported translation model: {model}. Skipping page {idx+1}."
                print(error_msg)
                yield error_msg
                yield f"--- ERROR: Unsupported Translation Model for Page {idx+1} ---\n\n{page}"
                continue # Skip to next page

            # --- Yield successful translation ---
            # translated_pages.append(translated_md) # Removed duplicate append

            yield translated_md # Yield the actual translated page content

        except Exception as e:
            error_msg = f"⚠️ 翻譯第 {idx+1} / {total_pages} 頁失敗:{e}"
            print(error_msg)
            yield error_msg # Yield error string to Gradio log
            # Yield error marker instead of translated content
            yield f"--- ERROR: Translation Failed for Page {idx+1} ---\n\n{page}"

    final_message = f"✅ 翻譯完成 {total_pages} 頁。"
    yield final_message # Yield final translation status string
    print(final_message) # Print final translation status
    # No return needed for a generator yielding results

# ===== PDF Processing Functions =====

def process_pdf_with_mistral_ocr(pdf_path, client, model="mistral-ocr-latest"):
    """Process PDF with Mistral OCR."""
    pdf_file = Path(pdf_path)
    
    # Upload to mistral
    uploaded_file = client.files.upload(
        file={
            "file_name": pdf_file.stem,
            "content": pdf_file.read_bytes(),
        },
        purpose="ocr"
    )
    
    signed_url = client.files.get_signed_url(file_id=uploaded_file.id, expiry=1)
    
    # OCR analyze PDF
    pdf_response = client.ocr.process(
        document=DocumentURLChunk(document_url=signed_url.url),
        model=model,
        include_image_base64=True
    )
    
    return pdf_response

# Updated function signature to include structure_text_only
def process_images_with_ocr(pdf_response, mistral_client, gemini_client, openai_client, structure_model="pixtral-12b-latest", structure_text_only=False):
    """Process images from PDF pages with OCR and structure using the specified model."""
    image_ocr_results = {}
    
    for page_idx, page in enumerate(pdf_response.pages):
        for i, img in enumerate(page.images):
            base64_data_url = img.image_base64
            
            # Extract raw base64 data for Gemini
            try:
                # Handle potential variations in data URL prefix
                if ',' in base64_data_url:
                    base64_content = base64_data_url.split(',', 1)[1]
                else:
                    # Assume it's just the base64 content if no comma prefix
                    base64_content = base64_data_url 
                # Decode and re-encode to ensure it's valid base64 bytes for Gemini
                image_bytes = base64.b64decode(base64_content)
            except Exception as e:
                print(f"⚠️ Error decoding base64 for page {page_idx+1}, image {i+1}: {e}. Skipping image.")
                continue # Skip this image if base64 is invalid

            def run_ocr_and_parse():
                # Step 1: Basic OCR (always use Mistral OCR for initial text extraction)
                print(f"  - Performing basic OCR on page {page_idx+1}, image {i+1}...")
                image_response = mistral_client.ocr.process(
                    document=ImageURLChunk(image_url=base64_data_url),
                    model="mistral-ocr-latest" # Use the dedicated OCR model here
                )
                image_ocr_markdown = image_response.pages[0].markdown
                print(f"  - Basic OCR text extracted.")

                # Step 2: Structure the OCR markdown using the selected model
                print(f"  - Structuring OCR using: {structure_model}")
                if structure_model == "pixtral-12b-latest":
                    print(f"    - Using Mistral Pixtral...")
                    print(f"    - Sending request to Pixtral API...") # Added print statement
                    structured = mistral_client.chat.parse(
                        model=structure_model, # Use the selected structure_model
                        messages=[
                            {
                                "role": "user",
                                "content": [
                                    ImageURLChunk(image_url=base64_data_url),
                                    TextChunk(text=(
                                        f"This is the image's OCR in markdown:\n{image_ocr_markdown}\n. "
                                        "Convert this into a structured JSON response with the OCR contents in a sensible dictionary."
                                    ))
                                ]
                            }
                        ],
                        response_format=StructuredOCR, # Use Pydantic model for expected structure
                        temperature=0
                    )
                    structured_data = structured.choices[0].message.parsed
                    pretty_text = json.dumps(structured_data.ocr_contents, indent=2, ensure_ascii=False)

                elif structure_model.startswith("gemini"): # Handle gemini-flash-2.0 etc.
                    print(f"    - Using Google Gemini ({structure_model})...")
                    # Define the base prompt text
                    base_prompt_text = f"""

You are an expert OCR structuring assistant. Your goal is to extract and structure the relevant content into a JSON object based on the provided information.



**Initial OCR Markdown:**

```markdown

{image_ocr_markdown}

```



**Task:**

Generate a JSON object containing the structured OCR content found in the image. Focus on extracting meaningful information and organizing it logically within the JSON. The JSON should represent the `ocr_contents` field.



**Output Format:**

Return ONLY the JSON object, without any surrounding text or markdown formatting. Example:

```json

{{

  "title": "Example Title",

  "sections": [

    {{"header": "Section 1", "content": "Details..."}},

    {{"header": "Section 2", "content": "More details..."}}

  ],

  "key_value_pairs": {{

    "key1": "value1",

    "key2": "value2"

  }}

}}

```

(Adapt the structure based on the image content.)

"""
                    # Prepare API call based on structure_text_only flag
                    gemini_contents = []
                    if structure_text_only:
                        print("    - Mode: Text-only structuring")
                        # Modify prompt slightly for text-only
                        gemini_prompt = base_prompt_text.replace(
                            "Analyze the provided image and the initial OCR text", 
                            "Analyze the initial OCR text"
                        ).replace(
                            "content from the image",
                            "content from the text"
                        )
                        gemini_contents.append(gemini_prompt)
                    else:
                        print("    - Mode: Image + Text structuring")
                        gemini_prompt = base_prompt_text # Use original prompt
                        # Prepare image part for Gemini using types.Part.from_bytes
                        # Assuming PNG, might need dynamic type detection in the future
                        # Pass the decoded image_bytes, not the base64_content string
                        try: # Corrected indentation
                            image_part = types.Part.from_bytes(
                                mime_type="image/png", 
                                data=image_bytes 
                            )
                            gemini_contents = [gemini_prompt, image_part] # Text prompt first, then image Part
                        except Exception as e:
                             print(f"    - ⚠️ Error creating Gemini image Part: {e}. Skipping image structuring.")
                             # Fallback or re-raise depending on desired behavior
                             pretty_text = json.dumps({"error": "Failed to create Gemini image Part", "details": str(e)}, indent=2, ensure_ascii=False)
                             return pretty_text # Exit run_ocr_and_parse for this image

                    # Call Gemini API - Corrected to use gemini_client.models.generate_content
                    print(f"    - Sending request to Gemini API ({structure_model})...") # Added print statement
                    
                    try:
                        response = gemini_client.models.generate_content(
                            model=structure_model, 
                            contents=gemini_contents # Pass the constructed list
                        )
                    except Exception as api_e:
                         print(f"    - ⚠️ Error calling Gemini API: {api_e}")
                         # Fallback or re-raise
                         pretty_text = json.dumps({"error": "Failed to call Gemini API", "details": str(api_e)}, indent=2, ensure_ascii=False)
                         return pretty_text # Exit run_ocr_and_parse for this image
                    
                    # Extract and clean the JSON response
                    raw_json_text = response.text.strip()
                    # Remove potential markdown code fences
                    if raw_json_text.startswith("```json"):
                        raw_json_text = raw_json_text[7:]
                    if raw_json_text.endswith("```"):
                        raw_json_text = raw_json_text[:-3]
                    raw_json_text = raw_json_text.strip()

                    # Validate and format the JSON
                    try:
                        parsed_json = json.loads(raw_json_text)
                        pretty_text = json.dumps(parsed_json, indent=2, ensure_ascii=False)
                    except json.JSONDecodeError as json_e:
                        print(f"    - ⚠️ Gemini response was not valid JSON: {json_e}")
                        print(f"    - Raw response: {raw_json_text}")
                        # Fallback: return the raw text wrapped in a basic JSON structure
                        pretty_text = json.dumps({"error": "Failed to parse Gemini JSON response", "raw_output": raw_json_text}, indent=2, ensure_ascii=False)

                elif structure_model.startswith("gpt-"):
                    print(f"    - Using OpenAI model: {structure_model}...")
                    if not openai_client:
                        print("    - ⚠️ OpenAI client not initialized. Skipping.")
                        return json.dumps({"error": "OpenAI client not initialized. Check API key and library installation."}, indent=2, ensure_ascii=False)

                    # Define the base prompt text for OpenAI
                    openai_base_prompt = f"""

You are an expert OCR structuring assistant. Your goal is to extract and structure the relevant content into a JSON object based on the provided information.



**Initial OCR Markdown:**

```markdown

{image_ocr_markdown}

```



**Task:**

Generate a JSON object containing the structured OCR content found in the image. Focus on extracting meaningful information and organizing it logically within the JSON. The JSON should represent the `ocr_contents` field.



**Output Format:**

Return ONLY the JSON object, without any surrounding text or markdown formatting. Example:

```json

{{

  "title": "Example Title",

  "sections": [

    {{"header": "Section 1", "content": "Details..."}},

    {{"header": "Section 2", "content": "More details..."}}

  ],

  "key_value_pairs": {{

    "key1": "value1",

    "key2": "value2"

  }}

}}

```

(Adapt the structure based on the image content. Ensure the output is valid JSON.)

"""
                    # Prepare payload for OpenAI vision based on structure_text_only
                    openai_content_list = []
                    if structure_text_only:
                        print("    - Mode: Text-only structuring")
                        # Modify prompt slightly for text-only
                        openai_prompt = openai_base_prompt.replace(
                            "Analyze the provided image and the initial OCR text", 
                            "Analyze the initial OCR text"
                        ).replace(
                            "content from the image",
                            "content from the text"
                        )
                        openai_content_list.append({"type": "text", "text": openai_prompt})
                    else:
                        print("    - Mode: Image + Text structuring")
                        openai_prompt = openai_base_prompt # Use original prompt
                        # Use the base64_content string directly for the data URL
                        # Assuming PNG, might need dynamic type detection
                        image_data_url = f"data:image/png;base64,{base64_content}" # Corrected indentation
                        openai_content_list.append({"type": "text", "text": openai_prompt})
                        openai_content_list.append({
                            "type": "image_url",
                            "image_url": {"url": image_data_url, "detail": "auto"}, 
                        })

                    print(f"    - Sending request to OpenAI API ({structure_model})...")
                    try:
                        response = openai_client.chat.completions.create(
                            model=structure_model,
                            messages=[
                                {
                                    "role": "user",
                                    "content": openai_content_list, # Pass the constructed list
                                }
                            ],
                            # Optionally add max_tokens if needed, but rely on prompt for JSON structure
                            # max_tokens=1000, 
                            temperature=0.1 # Lower temperature for deterministic JSON
                        )
                        
                        raw_json_text = response.choices[0].message.content.strip()
                        # Clean potential markdown fences
                        if raw_json_text.startswith("```json"):
                            raw_json_text = raw_json_text[7:]
                        if raw_json_text.endswith("```"):
                            raw_json_text = raw_json_text[:-3]
                        raw_json_text = raw_json_text.strip()

                        # Validate and format JSON
                        try:
                            parsed_json = json.loads(raw_json_text)
                            pretty_text = json.dumps(parsed_json, indent=2, ensure_ascii=False)
                        except json.JSONDecodeError as json_e:
                            print(f"    - ⚠️ OpenAI response was not valid JSON: {json_e}")
                            print(f"    - Raw response: {raw_json_text}")
                            pretty_text = json.dumps({"error": "Failed to parse OpenAI JSON response", "raw_output": raw_json_text}, indent=2, ensure_ascii=False)

                    except Exception as api_e:
                        print(f"    - ⚠️ Error calling OpenAI API: {api_e}")
                        pretty_text = json.dumps({"error": "Failed to call OpenAI API", "details": str(api_e)}, indent=2, ensure_ascii=False)
                
                else: # Final attempt to correct indentation for the final else
                    print(f"    - ⚠️ Unsupported structure model: {structure_model}. Skipping structuring.")
                    # Fallback: return the basic OCR markdown wrapped in JSON
                    pretty_text = json.dumps({"unstructured_ocr": image_ocr_markdown}, indent=2, ensure_ascii=False)

                return pretty_text
            
            try:
                # Pass the actual structure model name to the inner function if needed,
                # or rely on the outer scope variable 'structure_model' as done here.
                result = retry_with_backoff(run_ocr_and_parse, retries=4)
                image_ocr_results[(page_idx, img.id)] = result
            except Exception as e:
                print(f"❌ Failed at page {page_idx+1}, image {i+1}: {e}")
    
    # Reorganize results by page
    ocr_by_page = {}
    for (page_idx, img_id), ocr_text in image_ocr_results.items():
            ocr_by_page.setdefault(page_idx, {})[img_id] = ocr_text
            print(f"  - Successfully processed page {page_idx+1}, image {i+1} with {structure_model}.")
    
    return ocr_by_page

# ===== Checkpoint Functions =====

def save_checkpoint(data, filename, console_output=None):
    """Save data to a checkpoint file."""
    with open(filename, 'wb') as f:
        pickle.dump(data, f)
    message = f"✅ 已儲存檢查點:{filename}"
    print(message) # Corrected indentation
    # Removed console_output append
    return message # Return message

def load_checkpoint(filename, console_output=None):
    """Load data from a checkpoint file."""
    if os.path.exists(filename):
        with open(filename, 'rb') as f:
            data = pickle.load(f)
        message = f"✅ 已載入檢查點:{filename}"
        print(message)
        # Removed console_output append
        return data, message # Return message
    return None, None # Return None message

# ===== Main Processing Function =====

# Updated function signature to include structure_text_only
def process_pdf_to_markdown(

    pdf_path, 

    mistral_client, 

    gemini_client,

    openai_client, 

    ocr_model="mistral-ocr-latest",

    structure_model="pixtral-12b-latest",

    structure_text_only=False, # Added structure_text_only

    translation_model="gemini-2.0-flash",

    translation_system_prompt=None,

    process_images=True,

    output_formats_selected=None, # New parameter for selected formats

    output_dir=None,

    checkpoint_dir=None,

    use_existing_checkpoints=True

):
    """Main function to process PDF to markdown with translation. Yields log messages."""
    if output_formats_selected is None:
        output_formats_selected = ["中文翻譯", "英文原文"] # Default if not provided

    pdf_file = Path(pdf_path)
    filename_stem = pdf_file.stem
    # Sanitize the filename stem here as well
    sanitized_stem = filename_stem.replace(" ", "_")
    print(f"--- 開始處理檔案: {pdf_file.name} (Sanitized Stem: {sanitized_stem}) ---") # Console print

    # Output and checkpoint directories are now expected to be set by the caller (Gradio function)
    # os.makedirs(output_dir, exist_ok=True) # Ensure caller created it
    # os.makedirs(checkpoint_dir, exist_ok=True) # Ensure caller created it

    # Checkpoint files - Use sanitized_stem
    pdf_ocr_checkpoint = os.path.join(checkpoint_dir, f"{sanitized_stem}_pdf_ocr.pkl")
    image_ocr_checkpoint = os.path.join(checkpoint_dir, f"{sanitized_stem}_image_ocr.pkl")
    # Checkpoint for raw page data (list of tuples: (raw_markdown_text, images_dict))
    raw_page_data_checkpoint = os.path.join(checkpoint_dir, f"{sanitized_stem}_raw_page_data.pkl")

    # Step 1: Process PDF with OCR (with checkpoint)
    pdf_response = None
    load_msg = None
    if use_existing_checkpoints:
        pdf_response, load_msg = load_checkpoint(pdf_ocr_checkpoint) # Get message
        if load_msg: yield load_msg # Yield message

    if pdf_response is None:
        msg = "🔍 正在處理 PDF OCR..."
        yield msg
        print(msg) # Console print
        pdf_response = process_pdf_with_mistral_ocr(pdf_path, mistral_client, model=ocr_model)
        save_msg = save_checkpoint(pdf_response, pdf_ocr_checkpoint) # save_checkpoint already prints
        if save_msg: yield save_msg # Yield message
    else:
        print("ℹ️ 使用現有 PDF OCR 檢查點。")

    # Step 2: Process images with OCR (with checkpoint)
    ocr_by_page = {}
    if process_images:
        load_msg = None
        if use_existing_checkpoints:
            ocr_by_page, load_msg = load_checkpoint(image_ocr_checkpoint) # Get message
            if load_msg: yield load_msg # Yield message

        if ocr_by_page is None or not ocr_by_page: # Check if empty dict from checkpoint or explicitly empty
            msg = f"🖼️ 正在使用 '{structure_model}' 處理圖片 OCR 與結構化..."
            yield msg
            print(msg) # Console print
            # Pass gemini_client and correct structure_model parameter name
            ocr_by_page = process_images_with_ocr(
                pdf_response, 
                mistral_client, 
                gemini_client, 
                openai_client, 
                structure_model=structure_model,
                structure_text_only=structure_text_only # Pass the text-only flag
            )
            save_msg = save_checkpoint(ocr_by_page, image_ocr_checkpoint) # save_checkpoint already prints
            if save_msg: yield save_msg # Yield message
        else:
            print("ℹ️ 使用現有圖片 OCR 檢查點。")
    else:
        print("ℹ️ 跳過圖片 OCR 處理。") # process_images was False

    # Step 3: Create or load RAW page data (markdown text + image dicts)
    raw_page_data = None # List of tuples: (raw_markdown_text, images_dict)
    load_msg = None
    if use_existing_checkpoints:
        # Try loading the raw page data checkpoint
        raw_page_data, load_msg = load_checkpoint(raw_page_data_checkpoint)
        if load_msg: yield load_msg

    if raw_page_data is None:
        msg = "📝 正在建立原始頁面資料 (Markdown + 圖片資訊)..."
        yield msg
        print(msg)
        raw_page_data = []
        for page_idx, page in enumerate(pdf_response.pages):
            images_dict = {img.id: img.image_base64 for img in page.images}
            raw_md_text = page.markdown # Just the raw text with ![id](id)
            raw_page_data.append((raw_md_text, images_dict)) # Store as tuple

        # Save the RAW page data checkpoint
        save_msg = save_checkpoint(raw_page_data, raw_page_data_checkpoint)
        if save_msg: yield save_msg
    else:
        print("ℹ️ 使用現有原始頁面資料檢查點。")

    # Step 3.5: Conditionally insert image OCR results based on CURRENT UI selection
    pages_after_ocr_insertion = [] # List to hold markdown strings after potential OCR insertion
    if process_images and ocr_by_page: # Check if UI wants OCR AND if OCR results exist
        msg = "✍️ 根據目前設定,正在將圖片 OCR 結果插入 Markdown..."
        yield msg
        print(msg)
        for page_idx, (raw_md, _) in enumerate(raw_page_data): # Iterate through raw data
            # Insert OCR results into the raw markdown text BEFORE replacing links
            md_with_ocr = insert_ocr_below_images(raw_md, ocr_by_page, page_idx)
            pages_after_ocr_insertion.append(md_with_ocr)
    else:
        # If not inserting OCR, just use the raw markdown text
        if process_images and not ocr_by_page:
             msg = "ℹ️ 已勾選處理圖片 OCR,但無圖片 OCR 結果可插入 (可能需要重新執行圖片 OCR)。"
             yield msg
             print(msg)
        elif not process_images:
             msg = "ℹ️ 未勾選處理圖片 OCR,跳過插入步驟。"
             yield msg
             print(msg)
        # Use the raw markdown text directly
        pages_after_ocr_insertion = [raw_md for raw_md, _ in raw_page_data]

    # Step 3.6: Save images and replace links in the (potentially modified) markdown
    final_markdown_pages = [] # This list will have final file paths as links
    # Use sanitized_stem for image folder name
    image_folder_name = os.path.join(output_dir, f"images_{sanitized_stem}") 
    msg = f"🖼️ 正在儲存圖片並更新 Markdown 連結至 '{os.path.basename(image_folder_name)}'..."
    yield msg
    print(msg)
    # Iterate using the pages_after_ocr_insertion list and the original image dicts from raw_page_data
    for page_idx, (md_to_link, (_, images_dict)) in enumerate(zip(pages_after_ocr_insertion, raw_page_data)):
        # Now save images and replace links on the processed markdown (which might have OCR inserted)
        final_md = save_images_and_replace_links(md_to_link, images_dict, page_idx, image_folder=image_folder_name)
        final_markdown_pages.append(final_md)

    # Step 4: Translate the final markdown pages
    translated_markdown_pages = None # Initialize
    need_translation = "中文翻譯" in output_formats_selected
    if need_translation:
        # Translate the final list with correct image links, passing both clients
        translation_generator = translate_markdown_pages(
            final_markdown_pages, 
            gemini_client,
            openai_client, # Pass openai_client
            model=translation_model,
            system_instruction=translation_system_prompt
        )
        # Collect yielded pages from the translation generator
        translated_markdown_pages = [] # Initialize list to store results
        for item in translation_generator:
            # Check if it's a progress string or actual content/error
            # Simple check: assume non-empty strings starting with specific emojis are progress/status
            if isinstance(item, str) and (item.startswith("🔁") or item.startswith("⚠️") or item.startswith("✅")):
                 yield item # Forward progress/status string
            else:
                 # Assume it's translated content or an error marker page
                 translated_markdown_pages.append(item)
    else:
        yield "ℹ️ 跳過翻譯步驟 (未勾選中文翻譯)。"
        print("ℹ️ 跳過翻譯步驟 (未勾選中文翻譯)。")
        translated_markdown_pages = None # Ensure it's None if skipped

    # Step 5: Combine pages into complete markdown strings
    # The "original" output now correctly reflects the final state before translation
    final_markdown_original = "\n\n---\n\n".join(final_markdown_pages) # Use the final pages with links
    final_markdown_translated = "\n\n---\n\n".join(translated_markdown_pages) if translated_markdown_pages else None

    # Step 6: Save files based on selection - Use sanitized_stem
    saved_files = {}
    if "英文原文" in output_formats_selected:
        original_md_name = os.path.join(output_dir, f"{sanitized_stem}_original.md")
        try:
            with open(original_md_name, "w", encoding="utf-8") as f:
                f.write(final_markdown_original)
            msg = f"✅ 已儲存原文版:{original_md_name}"
            yield msg
            print(msg) # Console print
            saved_files["original_file"] = original_md_name
        except Exception as e:
            msg = f"❌ 儲存原文版失敗: {e}"
            yield msg
            print(msg)

    if "中文翻譯" in output_formats_selected and final_markdown_translated:
        translated_md_name = os.path.join(output_dir, f"{sanitized_stem}_translated.md")
        try:
            with open(translated_md_name, "w", encoding="utf-8") as f:
                f.write(final_markdown_translated)
            msg = f"✅ 已儲存翻譯版:{translated_md_name}"
            yield msg
            print(msg) # Console print
            saved_files["translated_file"] = translated_md_name
        except Exception as e:
            msg = f"❌ 儲存翻譯版失敗: {e}"
            yield msg
            print(msg)

    # Always report image folder path if it was created (i.e., if images existed and were saved)
    # The folder creation happens in save_images_and_replace_links
    image_folder_name = os.path.join(output_dir, f"images_{sanitized_stem}")
    if os.path.isdir(image_folder_name): # Check if the folder actually exists
        msg = f"✅ 圖片資料夾:{image_folder_name}"
        yield msg
        print(msg) # Console print
        saved_files["image_folder"] = image_folder_name
    # else: # Optional: Log if folder wasn't created (e.g., PDF had no images)
    #    msg = f"ℹ️ PDF 文件不包含圖片,未建立圖片資料夾。"
    #    yield msg
    #    print(msg)


    print(f"--- 完成處理檔案: {pdf_file.name} ---") # Console print

    # Return the final result dictionary for Gradio UI update
    yield {
        "saved_files": saved_files, # Dictionary of saved file paths
        "translated_content": final_markdown_translated,
        "original_content": final_markdown_original,
        "output_formats_selected": output_formats_selected # Pass back selections
    }

# ===== Gradio Interface =====

def create_gradio_interface():
    """Create a Gradio interface for the PDF to Markdown tool."""
    
    # Client initialization is now moved inside process_pdf

    # Define processing function for Gradio
    def process_pdf( # Updated signature to accept API keys and return file paths + log

        pdf_file,

        # API Keys from UI

        mistral_api_key_input,

        gemini_api_key_input,

        openai_api_key_input,

        # Other parameters

        ocr_model,

        structure_model,

        translation_model,

        translation_system_prompt,

        process_images,

        output_format, # CheckboxGroup list

        use_existing_checkpoints,

        structure_text_only

    ): # -> tuple[str | None, str | None, str | None, str]:
        # Accumulate logs for console output
        log_accumulator = ""
        mistral_client = None
        gemini_client = None
        openai_client = None
        print("\n--- Gradio 處理請求開始 ---") # Console print
        # Placeholders for file outputs and log
        output_original_md_path = None
        output_translated_md_path = None
        output_images_zip_path = None

        # --- Early Exit Checks ---
        if pdf_file is None:
            log_accumulator += "❌ 請先上傳 PDF 檔案\n"
            print("❌ 錯誤:未上傳 PDF 檔案")
            # Return Nones for files/previews and the error log (6 values total)
            yield None, None, None, None, None, "❌ 錯誤:未上傳 PDF 檔案\n" + log_accumulator
            return

        # --- API Key and Client Initialization ---
        log_accumulator += "🔑 正在初始化 API Clients...\n"
        # Yield updates for the log output only (6 values total)
        yield gr.update(), gr.update(), gr.update(), gr.update(), gr.update(), log_accumulator

        # Mistral (Required)
        if not mistral_api_key_input:
            log_accumulator += "❌ 錯誤:請務必提供 Mistral API Key。\n"
            print("❌ 錯誤:未提供 Mistral API Key")
            # Yield Nones for files/previews and the error log (6 values total)
            yield None, None, None, None, None, log_accumulator
            return
        try:
            mistral_client = Mistral(api_key=mistral_api_key_input)
            log_accumulator += "✅ Mistral Client 初始化成功。\n"
            print("✅ Mistral Client initialized.")
        except Exception as e:
            log_accumulator += f"❌ 初始化 Mistral Client 失敗: {e}\n"
            print(f"❌ Error initializing Mistral Client: {e}")
            # Yield Nones for files/previews and the error log (6 values total)
            yield None, None, None, None, None, log_accumulator
            return

        # Gemini (Optional, depends on model selection later)
        if gemini_api_key_input:
            try:
                gemini_client = genai.Client(api_key=gemini_api_key_input)
                log_accumulator += "✅ Gemini Client 初始化成功。\n"
                print("✅ Gemini Client initialized.")
            except Exception as e:
                log_accumulator += f"⚠️ 初始化 Gemini Client 失敗 (若未使用 Gemini 模型可忽略): {e}\n"
                print(f"⚠️ Error initializing Gemini Client (ignore if not using Gemini models): {e}")
                gemini_client = None # Ensure it's None if init fails
        else:
            log_accumulator += "ℹ️ 未提供 Gemini API Key,將無法使用 Gemini 模型。\n"
            print("ℹ️ Gemini API Key not provided.")
            gemini_client = None

        # OpenAI (Optional, depends on model selection later)
        if openai_api_key_input and OpenAI:
            try:
                openai_client = OpenAI(api_key=openai_api_key_input)
                log_accumulator += "✅ OpenAI Client 初始化成功。\n"
                print("✅ OpenAI Client initialized.")
            except Exception as e:
                log_accumulator += f"⚠️ 初始化 OpenAI Client 失敗 (若未使用 OpenAI 模型可忽略): {e}\n"
                print(f"⚠️ Error initializing OpenAI Client (ignore if not using OpenAI models): {e}")
                openai_client = None # Ensure it's None if init fails
        elif not OpenAI:
             log_accumulator += "ℹ️ OpenAI library 未安裝,無法使用 OpenAI 模型。\n"
             print("ℹ️ OpenAI library not installed.")
             openai_client = None
        else:
            log_accumulator += "ℹ️ 未提供 OpenAI API Key,將無法使用 OpenAI 模型。\n"
            print("ℹ️ OpenAI API Key not provided.")
            openai_client = None
        # --- End API Key and Client Initialization ---


        if not output_format:
             log_accumulator += "❌ 請至少選擇一種輸出格式(中文翻譯 或 英文原文)\n"
             print("❌ 錯誤:未選擇輸出格式")
             # Yield Nones for files/previews and the error log (6 values total)
             yield None, None, None, None, None, "❌ 錯誤:未選擇輸出格式\n" + log_accumulator
             return

        pdf_path_obj = Path(pdf_file.name) # Use pdf_file.name for Path object with temp files
        filename_stem = pdf_path_obj.stem
        # Sanitize the filename stem (replace spaces with underscores)
        sanitized_stem = filename_stem.replace(" ", "_")
        print(f"收到檔案: {pdf_path_obj.name} (Sanitized Stem: {sanitized_stem})") # Console print
        print(f"選擇的輸出格式: {output_format}")

        # --- Output Directory Logic (Using Temp Dir for Gradio Compatibility) ---
        try:
            # Create a unique temporary directory for this run's outputs
            # This directory will be inside Gradio's allowed paths (/tmp)
            temp_base_dir = tempfile.mkdtemp()
            output_dir = os.path.join(temp_base_dir, "outputs") # Subdir for final files
            checkpoint_dir = os.path.join(temp_base_dir, f"checkpoints_{sanitized_stem}") # Subdir for checkpoints

            os.makedirs(output_dir, exist_ok=True)
            os.makedirs(checkpoint_dir, exist_ok=True)
            log_accumulator += f"📂 使用暫存輸出目錄: {output_dir}\n"
            log_accumulator += f"💾 使用暫存檢查點目錄: {checkpoint_dir}\n"
            print(f"Using temporary output directory: {output_dir}")
            print(f"Using temporary checkpoint directory: {checkpoint_dir}")

        except Exception as e:
            error_msg = f"❌ 無法建立暫存目錄: {e}"
            log_accumulator += f"{error_msg}\n"
            print(f"❌ 錯誤:{error_msg}")
            # Yield Nones for files/previews and the error log (6 values total)
            yield None, None, None, None, None, f"❌ 錯誤:{error_msg}\n" + log_accumulator
            return
        # --- End Output Directory Logic ---


        # --- Initial Log Messages ---
        # Yield updates for the log output only (6 values total)
        log_accumulator += f"🚀 開始處理 PDF: {pdf_path_obj.name}\n"
        yield gr.update(), gr.update(), gr.update(), gr.update(), gr.update(), log_accumulator
        # Log the temp dirs being used
        log_accumulator += f"📂 使用暫存輸出目錄: {output_dir}\n" # Added log message back
        yield gr.update(), gr.update(), gr.update(), gr.update(), gr.update(), log_accumulator
        log_accumulator += f"💾 使用暫存檢查點目錄: {checkpoint_dir}\n" # Added log message back
        yield gr.update(), gr.update(), gr.update(), gr.update(), gr.update(), log_accumulator

        # Determine if translation is needed based on CheckboxGroup selection
        # The 'translate' checkbox is now less relevant, primary control is output_format
        need_translation_for_processing = "中文翻譯" in output_format
        log_accumulator += "✅ 將產生中文翻譯\n" if need_translation_for_processing else "ℹ️ 不產生中文翻譯 (未勾選)\n"
        yield gr.update(), gr.update(), gr.update(), gr.update(), gr.update(), log_accumulator
        log_accumulator += "✅ 使用現有檢查點(如果存在)\n" if use_existing_checkpoints else "🔄 重新處理所有步驟(不使用現有檢查點)\n"
        yield gr.update(), gr.update(), gr.update(), gr.update(), gr.update(), log_accumulator
        print(f"需要翻譯: {need_translation_for_processing}, 使用檢查點: {use_existing_checkpoints}")

        # --- Main Processing ---
        try:
            # process_pdf_to_markdown is a generator, iterate through its yields
            processor = process_pdf_to_markdown(
                pdf_path=pdf_file, # Pass the file path/object directly
                mistral_client=mistral_client,
                gemini_client=gemini_client,
                openai_client=openai_client, 
                ocr_model=ocr_model,
                structure_model=structure_model,
                structure_text_only=structure_text_only, # Pass text-only flag
                translation_model=translation_model,
                translation_system_prompt=translation_system_prompt if translation_system_prompt.strip() else None,
                process_images=process_images,
                output_formats_selected=output_format, # Pass selected formats
                output_dir=output_dir,
                checkpoint_dir=checkpoint_dir,
                use_existing_checkpoints=use_existing_checkpoints
            )

            result_data = None
            # Iterate through the generator from process_pdf_to_markdown
            for item in processor:
                if isinstance(item, dict): # Check if it's the final result dict
                    result_data = item
                    # Don't yield the dict itself to the log
                elif isinstance(item, str):
                    # Append and yield intermediate logs (6 values total)
                    log_accumulator += f"{item}\n"
                    # Yield updates for the log output only
                    yield gr.update(), gr.update(), gr.update(), gr.update(), gr.update(), log_accumulator
                # Handle potential other types if necessary, otherwise ignore

            # --- Process Final Result for UI ---
            # This part runs after the processor generator is exhausted
            if result_data:
                saved_files_dict = result_data.get("saved_files", {})
                output_original_md_path = saved_files_dict.get("original_file")
                output_translated_md_path = saved_files_dict.get("translated_file")
                image_folder_path = saved_files_dict.get("image_folder") # Gets the folder path

                # Zip the image folder only if the path exists and it's a directory
                if image_folder_path and os.path.isdir(image_folder_path):
                    log_accumulator += f"ℹ️ 找到圖片資料夾: {image_folder_path},嘗試壓縮...\n"
                    print(f"ℹ️ Found image folder: {image_folder_path}, attempting to zip...")
                    zip_base_name = image_folder_path # Use folder name as base for zip path
                    try:
                        # Ensure the target zip path doesn't conflict if run multiple times in same temp dir context (though mkdtemp should prevent this)
                        output_images_zip_path = shutil.make_archive(zip_base_name, 'zip', root_dir=os.path.dirname(image_folder_path), base_dir=os.path.basename(image_folder_path))
                        log_accumulator += f"✅ 已成功壓縮圖片資料夾:{output_images_zip_path}\n"
                        print(f"✅ Successfully zipped images: {output_images_zip_path}")
                    except Exception as zip_e:
                        error_msg = f"⚠️ 壓縮圖片資料夾 '{image_folder_path}' 失敗: {zip_e}"
                        log_accumulator += f"{error_msg}\n"
                        print(error_msg)
                        output_images_zip_path = None # Ensure it's None if zipping failed
                else:
                    # Explicitly log if image folder wasn't found or isn't a directory
                    if image_folder_path: # Path exists but not a dir
                         log_accumulator += f"ℹ️ 找到圖片資料夾路徑,但 '{image_folder_path}' 不是有效的資料夾。無法壓縮。\n"
                         print(f"ℹ️ Image folder path found but not a directory: {image_folder_path}. Cannot zip.")
                    else: # Path not found in saved_files (likely no images in PDF or folder wasn't saved)
                         log_accumulator += f"ℹ️ 未找到圖片資料夾路徑 (可能 PDF 無圖片或未儲存)。無法壓縮。\n"
                         print(f"ℹ️ Image folder path not found in saved_files (likely no images in PDF or folder not saved). Cannot zip.")
                    output_images_zip_path = None # Ensure it's None


                final_log_message = "✅ 處理完成!請查看預覽視窗,或至下載檔案視窗下載檔案。" # Updated message
                log_accumulator += f"{final_log_message}\n"
                print(f"--- Gradio 處理請求完成 ---")

            else:
                 final_log_message = "⚠️ 處理完成,但未收到預期的結果字典。"
                 log_accumulator += f"{final_log_message}\n"
                 print(f"⚠️ 警告:{final_log_message}")

            # Final yield: provide paths for file outputs, markdown content for previews, and the final log
            yield (
                output_original_md_path, 
                output_translated_md_path, 
                output_images_zip_path, 
                result_data.get("original_content", "無原文內容可預覽"), # Content for original preview
                result_data.get("translated_content", "無翻譯內容可預覽"), # Content for translated preview
                log_accumulator
            )

        except Exception as e:
            error_message = f"❌ Gradio 處理過程中發生未預期錯誤: {str(e)}"
            log_accumulator += f"{error_message}\n"
            print(f"❌ 嚴重錯誤:{error_message}")
            import traceback
            traceback.print_exc() # Print full traceback to console
            # Final yield in case of error: provide Nones for files/previews and the error log (6 values total)
            yield None, None, None, None, None, log_accumulator

    # Create Gradio interface
    with gr.Blocks(title="Mistral OCR & Translation Tool") as demo:
        gr.Markdown("""

        # Mistral OCR & 翻譯工具



        Convert PDF files to Markdown with OCR and English-to-Chinese translation, powered by Mistral, Gemini, and OpenAI.  

        將 PDF 文件轉為 Markdown 格式,支援圖片 OCR 和英文到繁體中文翻譯,使用 Mistral、Gemini 和 OpenAI 模型。

        """)
        
        with gr.Row():
            with gr.Column(scale=1):
                pdf_file = gr.File(label="上傳 PDF 檔案", file_types=[".pdf"])
                
                with gr.Accordion("基本設定", open=True):
                    # Define default path for placeholder clarity
                    default_output_path_display = os.path.join("桌面", "MistralOCR_Output") # Simplified for display
                    # Output directory is now handled internally using tempfile, remove UI element
                    # output_dir = gr.Textbox(
                    #     label="輸出目錄 (請貼上完整路徑)",
                    #     placeholder=f"留空預設儲存至:{default_output_path_display}",
                    #     info="將所有輸出檔案 (Markdown, 圖片, 檢查點) 儲存於此目錄。",
                    #     value="" # Default logic remains in process_pdf
                    # )

                    use_existing_checkpoints = gr.Checkbox(
                        label="使用現有檢查點(如果存在)", 
                        value=True,
                        info="啟用後,如果檢查點存在,將跳過已完成的步驟。"
                    )

                    output_format = gr.CheckboxGroup(
                        label="輸出格式 (可多選)",
                        choices=["中文翻譯", "英文原文"],
                        value=["中文翻譯", "英文原文"], # Default to both
                        info="選擇您需要儲存的 Markdown 檔案格式。"
                    )
                
                with gr.Accordion("API Keys (請自行填入)", open=True):
                    mistral_api_key_input = gr.Textbox(
                        label="Mistral API Key",
                        type="password",
                        placeholder="請貼上你的 Mistral API Key",
                        info="(必要) 用於 PDF 和圖片 OCR。請從 https://console.mistral.ai/ 獲取。此金鑰僅用於本次處理,不會儲存。"
                    )
                    gemini_api_key_input = gr.Textbox(
                        label="Gemini API Key",
                        type="password",
                        placeholder="請貼上你的 Gemini API Key",
                        info="(推薦) 若選擇 Gemini 模型進行翻譯或結構化,則需要。請從 https://aistudio.google.com/app/apikey 獲取。此金鑰僅用於本次處理,不會儲存。"
                    )
                    openai_api_key_input = gr.Textbox(
                        label="OpenAI API Key",
                        type="password",
                        placeholder="請貼上你的 OpenAI API Key",
                        info="(可選) 若選擇 GPT 模型進行翻譯或結構化,則需要。請從 https://platform.openai.com/api-keys 獲取。此金鑰僅用於本次處理,不會儲存。"
                    )


                with gr.Accordion("處理選項", open=False):
                    process_images = gr.Checkbox(
                        label="處理圖片 OCR",
                        value=True,
                        info="啟用後,將對 PDF 中的圖片額外進行 OCR 辨識"
                    )
                    
                   

                with gr.Accordion("模型設定", open=True):
                    ocr_model = gr.Dropdown(
                        label="OCR 模型", 
                        choices=["mistral-ocr-latest"], 
                        value="mistral-ocr-latest"
                    )
                    structure_model = gr.Dropdown(
                        label="結構化模型 (用於圖片 OCR)", 
                        choices=[
                            ("pixtral-12b-latest (Recommend)", "pixtral-12b-latest"),
                            ("gemini-2.0-flash (Recommend)", "gemini-2.0-flash"),
                            ("gpt-4o-mini", "gpt-4o-mini"),
                            ("gpt-4o", "gpt-4o"),
                            ("gpt-4.1-nano (Not Recommend)", "gpt-4.1-nano"),
                            ("gpt-4.1-mini", "gpt-4.1-mini"),
                            ("gpt-4.1", "gpt-4.1")
                        ], 
                        value="gemini-2.0-flash",
                        info="選擇用於結構化圖片 OCR 結果的模型。需要對應的 API Key。"
                    )
                    structure_text_only = gr.Checkbox(
                        label="僅用文字進行結構化 (節省 Token)",
                        value=False,
                        info="勾選後,僅將圖片的初步 OCR 文字傳送給 Gemini 或 OpenAI 進行結構化,不傳送圖片本身。對 Pixtral 無效。⚠️注意:缺少圖片視覺資訊可能導致結構化效果不佳,建議僅在 OCR 文字已足夠清晰時使用。"
                    )
                    translation_model = gr.Dropdown(
                        label="翻譯模型", 
                        choices=[
                            ("gemini-2.0-flash (Recommend)", "gemini-2.0-flash"), 
                            ("gemini-2.5-pro-exp-03-25", "gemini-2.5-pro-exp-03-25"), 
                            ("gemini-2.0-flash-lite", "gemini-2.0-flash-lite"),
                            ("gpt-4o", "gpt-4o"), 
                            ("gpt-4o-mini", "gpt-4o-mini"),
                            ("gpt-4.1-nano (Not Recommend)", "gpt-4.1-nano"),
                            ("gpt-4.1-mini", "gpt-4.1-mini"),
                            ("gpt-4.1", "gpt-4.1")
                        ], 
                        value="gemini-2.0-flash",
                        info="選擇用於翻譯的模型。需要對應的 API Key。"
                    )
                with gr.Accordion("進階設定", open=False):
                    translation_system_prompt = gr.Textbox(
                        label="翻譯系統提示詞", 
                        value=DEFAULT_TRANSLATION_SYSTEM_INSTRUCTION,
                        lines=10
                    )
                
                process_button = gr.Button("開始處理", variant="primary")
            
            with gr.Column(scale=2):
                with gr.Tab("處理日誌"):
                    console_output = gr.Textbox(
                        label="處理進度",
                        lines=20,
                        max_lines=50,
                        interactive=False,
                        autoscroll=True
                    )
                with gr.Tab("使用說明"):  
                    
                    gr.Markdown("""

                        # 使用說明



                        1. 上傳 PDF 檔案(可拖曳或點擊上傳)

                        2. 輸入 Mistral API 金鑰(必要)及 Gemini/OpenAI 金鑰(可選)

                        3. 基本設定:

                        - 選擇是否使用現有檢查點(預設啟用)

                        - 選擇輸出格式(中文翻譯、英文原文,可多選)

                        4. 處理選項:

                        - 選擇是否處理圖片 OCR(預設啟用)

                        5. 模型與進階設定(可選):

                        - 選擇 OCR、結構化、翻譯模型

                        - 修改翻譯提示詞(若需其他語言)

                        6. 點擊「開始處理」按鈕

                        7. 於「處理日誌」標籤查看進度,完成後從「下載檔案」標籤下載結果



                        ## 檢查點說明



                        - **PDF OCR 檢查點**:儲存 PDF 的 OCR 結果

                        - **圖片 OCR 檢查點**:儲存圖片的 OCR 結構化結果

                        - 若需重新處理,可取消勾選「使用現有檢查點」



                        ## 輸出檔案



                        - `[檔名]_original.md`:英文原文 Markdown

                        - `[檔名]_translated.md`:繁體中文翻譯 Markdown

                        - `images_[檔名].zip`:PDF 中提取的圖片

                                

                        ## API 使用量參考(粗略估計)



                        以下為兩個實際測試場景的 API 使用情況,可供預估大致耗用量:



                        ### 測試場景一(Gemini 全流程)



                        - **PDF 範例**:Jones & Bergen (2025) 論文前 3 頁(含 1 張圖片)

                        - **Mistral OCR**:消耗約 **4 Pages**(含圖片額外一次處理)

                        - **Gemini 2.0 Flash**:

                        - 結構化 + 翻譯(單模型)

                        - 輸入 Token 約 **7,300 Tokens**



                        ### 測試場景二(分開處理:Gemini 結構化 + GPT-4o Mini 翻譯)



                        - **PDF 範例**:同一份 3 頁英文文件(含圖片)

                        - **Mistral OCR**:消耗約 **4 Pages**

                        - **Gemini 2.0 Flash**(僅做結構化):

                        - 輸入 Token 約 **2,357 Tokens**

                        - **GPT-4o Mini**(做翻譯):

                        - 輸入 Token 約 **4,440 Tokens**



                        > **注意**:實際耗用量會根據 PDF 頁數、內容密度、圖片比例與翻譯範圍有所不同,以上數據僅供參考。



                        測試樣本之一引用:  

                        Jones, C. R., & Bergen, B. K. (2025). *Large Language Models Pass the Turing Test*. *arXiv preprint* [arXiv:2503.23674](https://arxiv.org/abs/2503.23674)  

                        本測試僅借用該論文前 3 頁作為輸入範例進行處理流程測試,未轉載、修改或散佈其內容。

                    """)
                
                with gr.Tab("預覽原文"): # New Tab for Original Preview
                    preview_original_md = gr.Markdown(label="預覽原文 Markdown")

                with gr.Tab("預覽翻譯"): # New Tab for Translated Preview
                    preview_translated_md = gr.Markdown(label="預覽翻譯 Markdown")

                
                with gr.Tab("下載檔案"): # Changed Tab name
                    # Add File output components for downloads
                    output_original_md = gr.File(label="下載原文 Markdown (.md)")
                    output_translated_md = gr.File(label="下載翻譯 Markdown (.md)")
                    output_images_zip = gr.File(label="下載圖片 (.zip)")
                with gr.Tab("關於"):  # 新增標籤
                    gr.Markdown("""

                    ## 關於 Mistral OCR 翻譯工具



                    本工具由 **David Chang** 開發,旨在將 PDF 文件轉換為 Markdown 格式,支援圖片 OCR 和英文到繁體中文的翻譯。整合以下技術:

                    - **Mistral AI**:PDF 和圖片 OCR

                    - **Google Gemini / OpenAI**:翻譯與結構化

                    - **Gradio**:互動式網頁介面



                    ### 版權與授權

                    - **作者**:David Chang

                    - **版權**:© 2025 David Chang

                    - **授權**:MIT 授權,詳見 [LICENSE](https://github.com/dodo13114arch/mistralocr-pdf2md-translator/blob/main/LICENSE)

                    - **GitHub**:https://github.com/dodo13114arch/mistralocr-pdf2md-translator



                    ### 感謝

                    感謝 Mistral AI、Google Gemini、OpenAI 和 Gradio 提供的技術支持,以及 Mistral 官方範例的啟發 ([Colab Notebook](https://colab.research.google.com/github/mistralai/cookbook/blob/main/mistral/ocr/structured_ocr.ipynb))。



                    ### 聯繫與反饋

                    歡迎在 GitHub 上提交問題或建議!

                    """)

        # Define outputs for the click event
        # Order must match the final yield in process_pdf:
        # file_orig, file_trans, file_zip, preview_orig, preview_trans, console_log
        outputs_list = [
            output_original_md,
            output_translated_md,
            output_images_zip,
            preview_original_md, # Added output for original preview
            preview_translated_md, # Added output for translated preview
            console_output
        ]

        # Define inputs for the click event (remove console_output)
        inputs_list=[
            pdf_file,
            # API Key Inputs
            mistral_api_key_input,
            gemini_api_key_input,
            openai_api_key_input,
            # Other parameters
            ocr_model,
            structure_model,
            translation_model,
            translation_system_prompt,
            process_images,
            # translate, # Removed
            output_format, # CheckboxGroup list
            use_existing_checkpoints,
            structure_text_only
        ]

        # Use process_button.click with the generator function
        process_button.click(
            fn=process_pdf,
            inputs=inputs_list,
            outputs=outputs_list
        )

        # Add event handler to exit script when UI is closed/unloaded
        # Removed inputs and outputs arguments as they are not accepted by unload
        # demo.unload(fn=lambda: os._exit(0))


        gr.Markdown("""

            

            ---



            **免責聲明**  

            本工具僅供學習與研究用途,整合 Mistral、Google Gemini 和 OpenAI API。請確保:

            - 您擁有合法的 API 金鑰,並遵守各服務條款([Mistral](https://mistral.ai/terms)、[Gemini](https://ai.google.dev/terms)、[OpenAI](https://openai.com/policies))。  

            - 上傳的 PDF 文件符合版權法規,您有權進行處理。  

            - 翻譯結果可能有誤,請自行驗證。  

            本工具不儲存任何上傳檔案或 API 金鑰,所有處理均在暫存環境中完成。



            **版權資訊**  

            Copyright © 2025 David Chang. 根據 MIT 授權發布,詳見 [LICENSE](https://github.com/dodo13114arch/mistralocr-pdf2md-translator/blob/main/LICENSE)。  

            GitHub: https://github.com/dodo13114arch/mistralocr-pdf2md-translator

            """)
    
    return demo

# ===== Main Execution =====

if __name__ == "__main__":
    # Create and launch Gradio interface
    demo = create_gradio_interface()
    demo.launch()