Upload 3 files
Browse files- README.md +130 -14
- mistralocr_app_demo.py +1300 -0
- requirements.txt +64 -0
README.md
CHANGED
@@ -1,14 +1,130 @@
|
|
1 |
-
---
|
2 |
-
title: Mistral
|
3 |
-
emoji:
|
4 |
-
colorFrom:
|
5 |
-
colorTo: purple
|
6 |
-
sdk: gradio
|
7 |
-
sdk_version: 5.25.2
|
8 |
-
app_file:
|
9 |
-
pinned: false
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
title: Mistral OCR 翻譯工具
|
3 |
+
emoji: 📄
|
4 |
+
colorFrom: indigo
|
5 |
+
colorTo: purple
|
6 |
+
sdk: gradio
|
7 |
+
sdk_version: "5.25.2"
|
8 |
+
app_file: mistralocr_app_demo.py
|
9 |
+
pinned: false
|
10 |
+
---
|
11 |
+
# Mistral OCR & 翻譯工具
|
12 |
+
|
13 |
+
**English**: Convert PDF files to Markdown with OCR and English-to-Traditional Chinese translation, powered by Mistral, Gemini, and OpenAI.
|
14 |
+
**中文**: 將 PDF 文件轉為 Markdown 格式,支援圖片 OCR 和英文到繁體中文翻譯,使用 Mistral、Gemini 和 OpenAI 模型。
|
15 |
+
|
16 |
+
---
|
17 |
+
|
18 |
+
## 功能亮點
|
19 |
+
|
20 |
+
- 📄 **PDF OCR**:使用 Mistral 模型提取 PDF 中的文字和圖片內容。
|
21 |
+
- 🌐 **翻譯**:將英文內容翻譯為繁體中文,支援 Gemini 和 OpenAI 模型。
|
22 |
+
- 🖼️ **圖片處理**:自動儲存 PDF 中的圖片並嵌入 Markdown。
|
23 |
+
- 💾 **多格式輸出**:生成英文原文和繁體中文翻譯的 Markdown 檔案。
|
24 |
+
- 🖥️ **Gradio 介面**:直觀的網頁 UI,無需本地安裝即可使用。
|
25 |
+
|
26 |
+
---
|
27 |
+
|
28 |
+
## 快速開始
|
29 |
+
|
30 |
+
本工具部署於 Hugging Face Spaces,無需本地設置即可試用。請按照以下步驟操作:
|
31 |
+
|
32 |
+
1. **上傳 PDF**:
|
33 |
+
- 在 Gradio 介面拖曳或點擊「上傳 PDF 檔案」,選擇你的 PDF 文件。
|
34 |
+
- 建議使用小型 PDF(<10MB)以確保快速處理。
|
35 |
+
2. **輸入 API 金鑰**:
|
36 |
+
- **Mistral API 金鑰**(必要):用於 OCR 處理。
|
37 |
+
- **Gemini/OpenAI 金鑰**(可選):用於翻譯或結構化。
|
38 |
+
3. **設置選項**:
|
39 |
+
- 選擇輸出格式(中文翻譯、英文原文,可多選)。
|
40 |
+
- 啟用「處理圖片 OCR」(預設開啟,適合掃描文件或圖表)。
|
41 |
+
4. **開始處理**:
|
42 |
+
- 點擊「開始處理」按鈕。
|
43 |
+
- 在「處理日誌」標籤查看進度,完成後從「下載檔案」標籤下載結果(Markdown 和圖片)。
|
44 |
+
|
45 |
+
> **提示**:確保網路穩定以完成 API 請求。首次使用可選擇包含文字和圖表的 PDF,體驗完整的 OCR 和翻譯功能。
|
46 |
+
|
47 |
+
---
|
48 |
+
|
49 |
+
## 需求
|
50 |
+
|
51 |
+
- **Mistral API 金鑰**(必要):從 [Mistral Console](https://console.mistral.ai/) 獲取,用於 PDF 和圖片 OCR。
|
52 |
+
- **Gemini API 金鑰**(可選):從 [Google AI Studio](https://aistudio.google.com/app/apikey) 獲取,用於翻譯或結構化。
|
53 |
+
- **OpenAI API 金鑰**(可選):從 [OpenAI Platform](https://platform.openai.com/api-keys) 獲取,用於 GPT 模型。
|
54 |
+
- **網路連線**:穩定的連線以確保 API 請求順暢。
|
55 |
+
|
56 |
+
> **注意**:所有 API 金鑰僅在處理期間使用,不會儲存。
|
57 |
+
|
58 |
+
---
|
59 |
+
|
60 |
+
## API 使用量參考(粗略估計)
|
61 |
+
|
62 |
+
以下為兩個實際測試場景的 API 使用情況,可供預估大致耗用量:
|
63 |
+
|
64 |
+
### 測試場景一(Gemini 全流程)
|
65 |
+
|
66 |
+
- **PDF 範例**:Jones & Bergen (2025) 論文前 3 頁(含 1 張圖片)
|
67 |
+
- **Mistral OCR**:消耗約 **4 Pages**(含圖片額外一次處理)
|
68 |
+
- **Gemini 2.0 Flash**:
|
69 |
+
- 結構化 + 翻譯(單模型)
|
70 |
+
- 輸入 Token 約 **7,300 Tokens**
|
71 |
+
|
72 |
+
### 測試場景二(分開處理:Gemini 結構化 + GPT-4o Mini 翻譯)
|
73 |
+
|
74 |
+
- **PDF 範例**:另一份 3 頁英文文件(含圖片)
|
75 |
+
- **Mistral OCR**:消耗約 **4 Pages**
|
76 |
+
- **Gemini 2.0 Flash**(僅做結構化):
|
77 |
+
- 輸入 Token 約 **2,357 Tokens**
|
78 |
+
- **GPT-4o Mini**(做翻譯):
|
79 |
+
- 輸入 Token 約 **4,440 Tokens**
|
80 |
+
|
81 |
+
> **注意**:實際耗用量會根據 PDF 頁數、內容密度、圖片比例與翻譯範圍有所不同,以上數據僅供參考。
|
82 |
+
|
83 |
+
測試樣本之一引用:
|
84 |
+
Jones, C. R., & Bergen, B. K. (2025). *Large Language Models Pass the Turing Test*. *arXiv preprint* [arXiv:2503.23674](https://arxiv.org/abs/2503.23674)
|
85 |
+
本測試僅借用該論文前 3 頁作為輸入範例進行處理流程測試,未轉載、修改或散佈其內容。
|
86 |
+
|
87 |
+
---
|
88 |
+
|
89 |
+
## 注意事項
|
90 |
+
|
91 |
+
- **檔案大小**:大型 PDF(>50MB)可能因 API 配額或 Spaces 資源限制而處理緩慢。
|
92 |
+
- **翻譯準確性**:AI 翻譯可能有誤,請對照原文驗證重要內容。
|
93 |
+
- **版權規範**:請確保上傳的 PDF 符合版權法規,您有權進行 OCR 和翻譯。
|
94 |
+
- **檢查點**:工具會儲存暫存檢查點以加速重複處理,可手動禁用。
|
95 |
+
|
96 |
+
---
|
97 |
+
|
98 |
+
## 技術與引用
|
99 |
+
|
100 |
+
本專案整合以下技術,並基於 Mistral 官方範例進行延伸:
|
101 |
+
|
102 |
+
- [Mistral AI](https://mistral.ai/):PDF 和圖片 OCR。
|
103 |
+
- [Google Gemini](https://ai.google.dev/):翻譯與結構化。
|
104 |
+
- [OpenAI](https://openai.com/):GPT 模型支援。
|
105 |
+
- [Gradio](https://www.gradio.app/):互動式介面。
|
106 |
+
- 改編自 [Mistral OCR Notebook](https://colab.research.google.com/github/mistralai/cookbook/blob/main/mistral/ocr/structured_ocr.ipynb)。
|
107 |
+
|
108 |
+
感謝以上服務提供者的技術支持!
|
109 |
+
|
110 |
+
---
|
111 |
+
|
112 |
+
## 授權
|
113 |
+
|
114 |
+
根據 MIT 授權發布,詳見 [LICENSE](./LICENSE)。
|
115 |
+
|
116 |
+
**版權**:© 2025 David Chang
|
117 |
+
|
118 |
+
---
|
119 |
+
|
120 |
+
## 聯繫與反饋
|
121 |
+
|
122 |
+
- **作者**:David Chang
|
123 |
+
- **GitHub**:https://github.com/dodo13114arch/mistralocr-pdf2md-translator
|
124 |
+
- **問題與建議**:歡迎在 GitHub 提交 Issue 或 Pull Request!
|
125 |
+
- **支持本專案**:如果覺得有用,請給個星星 ⭐!
|
126 |
+
|
127 |
+
---
|
128 |
+
|
129 |
+
**免責聲明**
|
130 |
+
本工具僅供學習與研究用途。使用者需自行遵守 API 提供者的條款([Mistral](https://mistral.ai/terms)、[Gemini](https://ai.google.dev/terms)、[OpenAI](https://openai.com/policies)),並確保上傳的 PDF 合法。翻譯結果僅供參考,可能存在不準確之處,請自行驗證。
|
mistralocr_app_demo.py
ADDED
@@ -0,0 +1,1300 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/env python3
|
2 |
+
# -*- coding: utf-8 -*-
|
3 |
+
|
4 |
+
"""
|
5 |
+
PDF Mistral OCR 匯出工具
|
6 |
+
|
7 |
+
本程式可將 PDF 文件自動化轉換為 Markdown 格式,包含以下流程:
|
8 |
+
|
9 |
+
1. 使用 Mistral OCR 模型辨識 PDF 內文與圖片
|
10 |
+
2. 將辨識結果組成含圖片的 Markdown 檔
|
11 |
+
3. 使用 Gemini 模型將英文內容翻譯為台灣繁體中文
|
12 |
+
4. 匯出 Markdown 檔(原文版 + 翻譯版)與對應圖片
|
13 |
+
|
14 |
+
新增功能:
|
15 |
+
- 處理過程中的檢查點,可以保存中間結果
|
16 |
+
- Gradio 介面,方便調整參數和選擇輸出格式
|
17 |
+
"""
|
18 |
+
|
19 |
+
# Standard libraries
|
20 |
+
import os
|
21 |
+
import json
|
22 |
+
import base64
|
23 |
+
import time
|
24 |
+
import tempfile # Already imported, ensure it's used correctly later
|
25 |
+
from pathlib import Path
|
26 |
+
import pickle
|
27 |
+
import certifi
|
28 |
+
import shutil # Added for zipping images
|
29 |
+
os.environ["SSL_CERT_FILE"] = certifi.where()
|
30 |
+
|
31 |
+
# Third-party libraries
|
32 |
+
from IPython.display import Markdown, display
|
33 |
+
from pydantic import BaseModel
|
34 |
+
from dotenv import load_dotenv
|
35 |
+
import gradio as gr
|
36 |
+
|
37 |
+
# Mistral AI
|
38 |
+
from mistralai import Mistral
|
39 |
+
from mistralai.models import OCRResponse, ImageURLChunk, DocumentURLChunk, TextChunk
|
40 |
+
|
41 |
+
# Google Gemini
|
42 |
+
from google import genai
|
43 |
+
from google.genai import types
|
44 |
+
|
45 |
+
# OpenAI
|
46 |
+
# Import the library (add 'openai' to requirements.txt)
|
47 |
+
try:
|
48 |
+
from openai import OpenAI
|
49 |
+
except ImportError:
|
50 |
+
print("⚠️ OpenAI library not found. Please install it: pip install openai")
|
51 |
+
OpenAI = None # Set to None if import fails
|
52 |
+
|
53 |
+
# ===== Pydantic Models =====
|
54 |
+
|
55 |
+
class StructuredOCR(BaseModel):
|
56 |
+
file_name: str
|
57 |
+
topics: list[str]
|
58 |
+
languages: str
|
59 |
+
ocr_contents: dict
|
60 |
+
|
61 |
+
# ===== Utility Functions =====
|
62 |
+
|
63 |
+
def retry_with_backoff(func, retries=5, base_delay=1.5):
|
64 |
+
"""Retry a function with exponential backoff."""
|
65 |
+
for attempt in range(retries):
|
66 |
+
try:
|
67 |
+
return func()
|
68 |
+
except Exception as e:
|
69 |
+
if "429" in str(e):
|
70 |
+
wait_time = base_delay * (2 ** attempt)
|
71 |
+
print(f"⚠️ API rate limit hit. Retrying in {wait_time:.1f}s...")
|
72 |
+
time.sleep(wait_time)
|
73 |
+
else:
|
74 |
+
raise e
|
75 |
+
raise RuntimeError("❌ Failed after multiple retries.")
|
76 |
+
|
77 |
+
def replace_images_in_markdown(markdown_str: str, images_dict: dict) -> str:
|
78 |
+
"""Replace image placeholders in markdown with base64-encoded images."""
|
79 |
+
for img_name, base64_str in images_dict.items():
|
80 |
+
markdown_str = markdown_str.replace(
|
81 |
+
f"", f""
|
82 |
+
)
|
83 |
+
return markdown_str
|
84 |
+
|
85 |
+
def get_combined_markdown(ocr_response: OCRResponse) -> str:
|
86 |
+
"""Combine OCR text and images into a single markdown document."""
|
87 |
+
markdowns: list[str] = []
|
88 |
+
for page in ocr_response.pages:
|
89 |
+
image_data = {img.id: img.image_base64 for img in page.images}
|
90 |
+
markdowns.append(replace_images_in_markdown(page.markdown, image_data))
|
91 |
+
return "\n\n".join(markdowns)
|
92 |
+
|
93 |
+
def insert_ocr_below_images(markdown_str, ocr_img_map, page_idx):
|
94 |
+
"""Insert OCR results below images in markdown."""
|
95 |
+
for img_id, ocr_text in ocr_img_map.get(page_idx, {}).items():
|
96 |
+
markdown_str = markdown_str.replace(
|
97 |
+
f"",
|
98 |
+
f"\n\n> 📄 Image OCR Result:\n\n```json\n{ocr_text}\n```"
|
99 |
+
)
|
100 |
+
return markdown_str
|
101 |
+
|
102 |
+
def save_images_and_replace_links(markdown_str, images_dict, page_idx, image_folder="images"):
|
103 |
+
"""Save base64 images to files and update markdown links."""
|
104 |
+
os.makedirs(image_folder, exist_ok=True)
|
105 |
+
image_id_to_path = {}
|
106 |
+
|
107 |
+
for i, (img_id, base64_str) in enumerate(images_dict.items()):
|
108 |
+
img_bytes = base64.b64decode(base64_str.split(",")[-1])
|
109 |
+
# 使用相對路徑,僅保留資料夾名稱和檔案名稱
|
110 |
+
img_path = f"{os.path.basename(image_folder)}/page_{page_idx+1}_img_{i+1}.png"
|
111 |
+
|
112 |
+
# 實際儲存的完整路徑
|
113 |
+
full_img_path = os.path.join(image_folder, f"page_{page_idx+1}_img_{i+1}.png")
|
114 |
+
with open(full_img_path, "wb") as f:
|
115 |
+
f.write(img_bytes)
|
116 |
+
image_id_to_path[img_id] = img_path
|
117 |
+
|
118 |
+
for img_id, img_path in image_id_to_path.items():
|
119 |
+
markdown_str = markdown_str.replace(
|
120 |
+
f"", f""
|
121 |
+
)
|
122 |
+
|
123 |
+
return markdown_str
|
124 |
+
|
125 |
+
# ===== Translation Functions =====
|
126 |
+
|
127 |
+
# Default translation system prompt
|
128 |
+
DEFAULT_TRANSLATION_SYSTEM_INSTRUCTION = """
|
129 |
+
你是一位專業的技術文件翻譯者。請將我提供的英文 Markdown 內容翻譯成**台灣繁體中文**。
|
130 |
+
|
131 |
+
**核心要求:**
|
132 |
+
1. **翻譯所有英文文字:** 你的主要工作是翻譯內容中的英文敘述性文字(段落、列表、表格等)。
|
133 |
+
2. **保持結構與程式碼不變:**
|
134 |
+
* **不要**更改任何 Markdown 標記(如 `#`, `*`, `-`, `[]()`, `![]()`, ``` ```, ` `` `, `---`)。
|
135 |
+
* **不要**翻譯或���改程式碼區塊 (``` ... ```) 和行內程式碼 (`code`) 裡的任何內容。
|
136 |
+
* 若有 JSON,**不要**更改鍵(key),僅翻譯字串值(value)。
|
137 |
+
3. **處理專有名詞:** 對於普遍接受的英文技術術語、縮寫或專有名詞(例如 API, SDK, CPU, Google, Python 等),傾向於**保留英文原文**。但請確保翻譯了其他所有非術語的常規英文文字。
|
138 |
+
4. **直接輸出結果:** 請直接回傳翻譯後的完整 Markdown 文件,不要添加任何額外說明。
|
139 |
+
"""
|
140 |
+
|
141 |
+
# Updated signature to accept openai_client
|
142 |
+
def translate_markdown_pages(pages, gemini_client, openai_client, model="gemini-2.0-flash", system_instruction=None):
|
143 |
+
"""Translate markdown pages using the selected API (Gemini or OpenAI). Yields progress strings and translated page content."""
|
144 |
+
if system_instruction is None:
|
145 |
+
system_instruction = DEFAULT_TRANSLATION_SYSTEM_INSTRUCTION
|
146 |
+
|
147 |
+
# No longer collecting in a list here, will yield pages directly
|
148 |
+
total_pages = len(pages) # Get total pages for progress
|
149 |
+
|
150 |
+
for idx, page in enumerate(pages):
|
151 |
+
progress_message = f"🔁 正在翻譯第 {idx+1} / {total_pages} 頁..."
|
152 |
+
print(progress_message) # Print to console
|
153 |
+
yield progress_message # Yield progress string for Gradio log
|
154 |
+
|
155 |
+
try:
|
156 |
+
if model.startswith("gpt-"):
|
157 |
+
# --- OpenAI Translation Logic ---
|
158 |
+
if not openai_client:
|
159 |
+
error_msg = f"⚠️ OpenAI client not initialized for translation model {model}. Skipping page {idx+1}."
|
160 |
+
print(error_msg)
|
161 |
+
yield error_msg
|
162 |
+
yield f"--- ERROR: OpenAI Client Error for Page {idx+1} ---\n\n{page}"
|
163 |
+
continue # Skip to next page
|
164 |
+
|
165 |
+
print(f" - Translating using OpenAI model: {model}")
|
166 |
+
try:
|
167 |
+
# Construct messages for OpenAI translation
|
168 |
+
# Use the provided system_instruction as the system message
|
169 |
+
messages = [
|
170 |
+
{"role": "system", "content": system_instruction},
|
171 |
+
{"role": "user", "content": page}
|
172 |
+
]
|
173 |
+
|
174 |
+
response = openai_client.chat.completions.create(
|
175 |
+
model=model,
|
176 |
+
messages=messages,
|
177 |
+
temperature=0.1 # Lower temperature for more deterministic translation
|
178 |
+
)
|
179 |
+
translated_md = response.choices[0].message.content.strip()
|
180 |
+
except Exception as openai_e:
|
181 |
+
error_msg = f"⚠️ OpenAI 翻譯第 {idx+1} / {total_pages} 頁失敗:{openai_e}"
|
182 |
+
print(error_msg)
|
183 |
+
yield error_msg # Yield error string to Gradio log
|
184 |
+
yield f"--- ERROR: OpenAI Translation Failed for Page {idx+1} ---\n\n{page}"
|
185 |
+
continue # Skip to next page
|
186 |
+
|
187 |
+
elif model.startswith("gemini"):
|
188 |
+
# --- Gemini Translation Logic ---
|
189 |
+
print(f" - Translating using Gemini model: {model}")
|
190 |
+
response = gemini_client.models.generate_content(
|
191 |
+
model=model,
|
192 |
+
config=types.GenerateContentConfig(
|
193 |
+
system_instruction=system_instruction
|
194 |
+
),
|
195 |
+
contents=page
|
196 |
+
)
|
197 |
+
translated_md = response.text.strip()
|
198 |
+
|
199 |
+
else:
|
200 |
+
# --- Unsupported Model ---
|
201 |
+
error_msg = f"⚠️ Unsupported translation model: {model}. Skipping page {idx+1}."
|
202 |
+
print(error_msg)
|
203 |
+
yield error_msg
|
204 |
+
yield f"--- ERROR: Unsupported Translation Model for Page {idx+1} ---\n\n{page}"
|
205 |
+
continue # Skip to next page
|
206 |
+
|
207 |
+
# --- Yield successful translation ---
|
208 |
+
# translated_pages.append(translated_md) # Removed duplicate append
|
209 |
+
|
210 |
+
yield translated_md # Yield the actual translated page content
|
211 |
+
|
212 |
+
except Exception as e:
|
213 |
+
error_msg = f"⚠️ 翻譯第 {idx+1} / {total_pages} 頁失敗:{e}"
|
214 |
+
print(error_msg)
|
215 |
+
yield error_msg # Yield error string to Gradio log
|
216 |
+
# Yield error marker instead of translated content
|
217 |
+
yield f"--- ERROR: Translation Failed for Page {idx+1} ---\n\n{page}"
|
218 |
+
|
219 |
+
final_message = f"✅ 翻譯完成 {total_pages} 頁。"
|
220 |
+
yield final_message # Yield final translation status string
|
221 |
+
print(final_message) # Print final translation status
|
222 |
+
# No return needed for a generator yielding results
|
223 |
+
|
224 |
+
# ===== PDF Processing Functions =====
|
225 |
+
|
226 |
+
def process_pdf_with_mistral_ocr(pdf_path, client, model="mistral-ocr-latest"):
|
227 |
+
"""Process PDF with Mistral OCR."""
|
228 |
+
pdf_file = Path(pdf_path)
|
229 |
+
|
230 |
+
# Upload to mistral
|
231 |
+
uploaded_file = client.files.upload(
|
232 |
+
file={
|
233 |
+
"file_name": pdf_file.stem,
|
234 |
+
"content": pdf_file.read_bytes(),
|
235 |
+
},
|
236 |
+
purpose="ocr"
|
237 |
+
)
|
238 |
+
|
239 |
+
signed_url = client.files.get_signed_url(file_id=uploaded_file.id, expiry=1)
|
240 |
+
|
241 |
+
# OCR analyze PDF
|
242 |
+
pdf_response = client.ocr.process(
|
243 |
+
document=DocumentURLChunk(document_url=signed_url.url),
|
244 |
+
model=model,
|
245 |
+
include_image_base64=True
|
246 |
+
)
|
247 |
+
|
248 |
+
return pdf_response
|
249 |
+
|
250 |
+
# Updated function signature to include structure_text_only
|
251 |
+
def process_images_with_ocr(pdf_response, mistral_client, gemini_client, openai_client, structure_model="pixtral-12b-latest", structure_text_only=False):
|
252 |
+
"""Process images from PDF pages with OCR and structure using the specified model."""
|
253 |
+
image_ocr_results = {}
|
254 |
+
|
255 |
+
for page_idx, page in enumerate(pdf_response.pages):
|
256 |
+
for i, img in enumerate(page.images):
|
257 |
+
base64_data_url = img.image_base64
|
258 |
+
|
259 |
+
# Extract raw base64 data for Gemini
|
260 |
+
try:
|
261 |
+
# Handle potential variations in data URL prefix
|
262 |
+
if ',' in base64_data_url:
|
263 |
+
base64_content = base64_data_url.split(',', 1)[1]
|
264 |
+
else:
|
265 |
+
# Assume it's just the base64 content if no comma prefix
|
266 |
+
base64_content = base64_data_url
|
267 |
+
# Decode and re-encode to ensure it's valid base64 bytes for Gemini
|
268 |
+
image_bytes = base64.b64decode(base64_content)
|
269 |
+
except Exception as e:
|
270 |
+
print(f"⚠️ Error decoding base64 for page {page_idx+1}, image {i+1}: {e}. Skipping image.")
|
271 |
+
continue # Skip this image if base64 is invalid
|
272 |
+
|
273 |
+
def run_ocr_and_parse():
|
274 |
+
# Step 1: Basic OCR (always use Mistral OCR for initial text extraction)
|
275 |
+
print(f" - Performing basic OCR on page {page_idx+1}, image {i+1}...")
|
276 |
+
image_response = mistral_client.ocr.process(
|
277 |
+
document=ImageURLChunk(image_url=base64_data_url),
|
278 |
+
model="mistral-ocr-latest" # Use the dedicated OCR model here
|
279 |
+
)
|
280 |
+
image_ocr_markdown = image_response.pages[0].markdown
|
281 |
+
print(f" - Basic OCR text extracted.")
|
282 |
+
|
283 |
+
# Step 2: Structure the OCR markdown using the selected model
|
284 |
+
print(f" - Structuring OCR using: {structure_model}")
|
285 |
+
if structure_model == "pixtral-12b-latest":
|
286 |
+
print(f" - Using Mistral Pixtral...")
|
287 |
+
print(f" - Sending request to Pixtral API...") # Added print statement
|
288 |
+
structured = mistral_client.chat.parse(
|
289 |
+
model=structure_model, # Use the selected structure_model
|
290 |
+
messages=[
|
291 |
+
{
|
292 |
+
"role": "user",
|
293 |
+
"content": [
|
294 |
+
ImageURLChunk(image_url=base64_data_url),
|
295 |
+
TextChunk(text=(
|
296 |
+
f"This is the image's OCR in markdown:\n{image_ocr_markdown}\n. "
|
297 |
+
"Convert this into a structured JSON response with the OCR contents in a sensible dictionary."
|
298 |
+
))
|
299 |
+
]
|
300 |
+
}
|
301 |
+
],
|
302 |
+
response_format=StructuredOCR, # Use Pydantic model for expected structure
|
303 |
+
temperature=0
|
304 |
+
)
|
305 |
+
structured_data = structured.choices[0].message.parsed
|
306 |
+
pretty_text = json.dumps(structured_data.ocr_contents, indent=2, ensure_ascii=False)
|
307 |
+
|
308 |
+
elif structure_model.startswith("gemini"): # Handle gemini-flash-2.0 etc.
|
309 |
+
print(f" - Using Google Gemini ({structure_model})...")
|
310 |
+
# Define the base prompt text
|
311 |
+
base_prompt_text = f"""
|
312 |
+
You are an expert OCR structuring assistant. Your goal is to extract and structure the relevant content into a JSON object based on the provided information.
|
313 |
+
|
314 |
+
**Initial OCR Markdown:**
|
315 |
+
```markdown
|
316 |
+
{image_ocr_markdown}
|
317 |
+
```
|
318 |
+
|
319 |
+
**Task:**
|
320 |
+
Generate a JSON object containing the structured OCR content found in the image. Focus on extracting meaningful information and organizing it logically within the JSON. The JSON should represent the `ocr_contents` field.
|
321 |
+
|
322 |
+
**Output Format:**
|
323 |
+
Return ONLY the JSON object, without any surrounding text or markdown formatting. Example:
|
324 |
+
```json
|
325 |
+
{{
|
326 |
+
"title": "Example Title",
|
327 |
+
"sections": [
|
328 |
+
{{"header": "Section 1", "content": "Details..."}},
|
329 |
+
{{"header": "Section 2", "content": "More details..."}}
|
330 |
+
],
|
331 |
+
"key_value_pairs": {{
|
332 |
+
"key1": "value1",
|
333 |
+
"key2": "value2"
|
334 |
+
}}
|
335 |
+
}}
|
336 |
+
```
|
337 |
+
(Adapt the structure based on the image content.)
|
338 |
+
"""
|
339 |
+
# Prepare API call based on structure_text_only flag
|
340 |
+
gemini_contents = []
|
341 |
+
if structure_text_only:
|
342 |
+
print(" - Mode: Text-only structuring")
|
343 |
+
# Modify prompt slightly for text-only
|
344 |
+
gemini_prompt = base_prompt_text.replace(
|
345 |
+
"Analyze the provided image and the initial OCR text",
|
346 |
+
"Analyze the initial OCR text"
|
347 |
+
).replace(
|
348 |
+
"content from the image",
|
349 |
+
"content from the text"
|
350 |
+
)
|
351 |
+
gemini_contents.append(gemini_prompt)
|
352 |
+
else:
|
353 |
+
print(" - Mode: Image + Text structuring")
|
354 |
+
gemini_prompt = base_prompt_text # Use original prompt
|
355 |
+
# Prepare image part for Gemini using types.Part.from_bytes
|
356 |
+
# Assuming PNG, might need dynamic type detection in the future
|
357 |
+
# Pass the decoded image_bytes, not the base64_content string
|
358 |
+
try: # Corrected indentation
|
359 |
+
image_part = types.Part.from_bytes(
|
360 |
+
mime_type="image/png",
|
361 |
+
data=image_bytes
|
362 |
+
)
|
363 |
+
gemini_contents = [gemini_prompt, image_part] # Text prompt first, then image Part
|
364 |
+
except Exception as e:
|
365 |
+
print(f" - ⚠️ Error creating Gemini image Part: {e}. Skipping image structuring.")
|
366 |
+
# Fallback or re-raise depending on desired behavior
|
367 |
+
pretty_text = json.dumps({"error": "Failed to create Gemini image Part", "details": str(e)}, indent=2, ensure_ascii=False)
|
368 |
+
return pretty_text # Exit run_ocr_and_parse for this image
|
369 |
+
|
370 |
+
# Call Gemini API - Corrected to use gemini_client.models.generate_content
|
371 |
+
print(f" - Sending request to Gemini API ({structure_model})...") # Added print statement
|
372 |
+
|
373 |
+
try:
|
374 |
+
response = gemini_client.models.generate_content(
|
375 |
+
model=structure_model,
|
376 |
+
contents=gemini_contents # Pass the constructed list
|
377 |
+
)
|
378 |
+
except Exception as api_e:
|
379 |
+
print(f" - ⚠️ Error calling Gemini API: {api_e}")
|
380 |
+
# Fallback or re-raise
|
381 |
+
pretty_text = json.dumps({"error": "Failed to call Gemini API", "details": str(api_e)}, indent=2, ensure_ascii=False)
|
382 |
+
return pretty_text # Exit run_ocr_and_parse for this image
|
383 |
+
|
384 |
+
# Extract and clean the JSON response
|
385 |
+
raw_json_text = response.text.strip()
|
386 |
+
# Remove potential markdown code fences
|
387 |
+
if raw_json_text.startswith("```json"):
|
388 |
+
raw_json_text = raw_json_text[7:]
|
389 |
+
if raw_json_text.endswith("```"):
|
390 |
+
raw_json_text = raw_json_text[:-3]
|
391 |
+
raw_json_text = raw_json_text.strip()
|
392 |
+
|
393 |
+
# Validate and format the JSON
|
394 |
+
try:
|
395 |
+
parsed_json = json.loads(raw_json_text)
|
396 |
+
pretty_text = json.dumps(parsed_json, indent=2, ensure_ascii=False)
|
397 |
+
except json.JSONDecodeError as json_e:
|
398 |
+
print(f" - ⚠️ Gemini response was not valid JSON: {json_e}")
|
399 |
+
print(f" - Raw response: {raw_json_text}")
|
400 |
+
# Fallback: return the raw text wrapped in a basic JSON structure
|
401 |
+
pretty_text = json.dumps({"error": "Failed to parse Gemini JSON response", "raw_output": raw_json_text}, indent=2, ensure_ascii=False)
|
402 |
+
|
403 |
+
elif structure_model == "gpt-4o-mini":
|
404 |
+
print(f" - Using OpenAI GPT-4o mini...")
|
405 |
+
if not openai_client:
|
406 |
+
print(" - ⚠️ OpenAI client not initialized. Skipping.")
|
407 |
+
return json.dumps({"error": "OpenAI client not initialized. Check API key and library installation."}, indent=2, ensure_ascii=False)
|
408 |
+
|
409 |
+
# Define the base prompt text for OpenAI
|
410 |
+
openai_base_prompt = f"""
|
411 |
+
You are an expert OCR structuring assistant. Your goal is to extract and structure the relevant content into a JSON object based on the provided information.
|
412 |
+
|
413 |
+
**Initial OCR Markdown:**
|
414 |
+
```markdown
|
415 |
+
{image_ocr_markdown}
|
416 |
+
```
|
417 |
+
|
418 |
+
**Task:**
|
419 |
+
Generate a JSON object containing the structured OCR content found in the image. Focus on extracting meaningful information and organizing it logically within the JSON. The JSON should represent the `ocr_contents` field.
|
420 |
+
|
421 |
+
**Output Format:**
|
422 |
+
Return ONLY the JSON object, without any surrounding text or markdown formatting. Example:
|
423 |
+
```json
|
424 |
+
{{
|
425 |
+
"title": "Example Title",
|
426 |
+
"sections": [
|
427 |
+
{{"header": "Section 1", "content": "Details..."}},
|
428 |
+
{{"header": "Section 2", "content": "More details..."}}
|
429 |
+
],
|
430 |
+
"key_value_pairs": {{
|
431 |
+
"key1": "value1",
|
432 |
+
"key2": "value2"
|
433 |
+
}}
|
434 |
+
}}
|
435 |
+
```
|
436 |
+
(Adapt the structure based on the image content. Ensure the output is valid JSON.)
|
437 |
+
"""
|
438 |
+
# Prepare payload for OpenAI vision based on structure_text_only
|
439 |
+
openai_content_list = []
|
440 |
+
if structure_text_only:
|
441 |
+
print(" - Mode: Text-only structuring")
|
442 |
+
# Modify prompt slightly for text-only
|
443 |
+
openai_prompt = openai_base_prompt.replace(
|
444 |
+
"Analyze the provided image and the initial OCR text",
|
445 |
+
"Analyze the initial OCR text"
|
446 |
+
).replace(
|
447 |
+
"content from the image",
|
448 |
+
"content from the text"
|
449 |
+
)
|
450 |
+
openai_content_list.append({"type": "text", "text": openai_prompt})
|
451 |
+
else:
|
452 |
+
print(" - Mode: Image + Text structuring")
|
453 |
+
openai_prompt = openai_base_prompt # Use original prompt
|
454 |
+
# Use the base64_content string directly for the data URL
|
455 |
+
# Assuming PNG, might need dynamic type detection
|
456 |
+
image_data_url = f"data:image/png;base64,{base64_content}" # Corrected indentation
|
457 |
+
openai_content_list.append({"type": "text", "text": openai_prompt})
|
458 |
+
openai_content_list.append({
|
459 |
+
"type": "image_url",
|
460 |
+
"image_url": {"url": image_data_url, "detail": "auto"},
|
461 |
+
})
|
462 |
+
|
463 |
+
print(f" - Sending request to OpenAI API ({structure_model})...")
|
464 |
+
try:
|
465 |
+
response = openai_client.chat.completions.create(
|
466 |
+
model=structure_model,
|
467 |
+
messages=[
|
468 |
+
{
|
469 |
+
"role": "user",
|
470 |
+
"content": openai_content_list, # Pass the constructed list
|
471 |
+
}
|
472 |
+
],
|
473 |
+
# Optionally add max_tokens if needed, but rely on prompt for JSON structure
|
474 |
+
# max_tokens=1000,
|
475 |
+
temperature=0.1 # Lower temperature for deterministic JSON
|
476 |
+
)
|
477 |
+
|
478 |
+
raw_json_text = response.choices[0].message.content.strip()
|
479 |
+
# Clean potential markdown fences
|
480 |
+
if raw_json_text.startswith("```json"):
|
481 |
+
raw_json_text = raw_json_text[7:]
|
482 |
+
if raw_json_text.endswith("```"):
|
483 |
+
raw_json_text = raw_json_text[:-3]
|
484 |
+
raw_json_text = raw_json_text.strip()
|
485 |
+
|
486 |
+
# Validate and format JSON
|
487 |
+
try:
|
488 |
+
parsed_json = json.loads(raw_json_text)
|
489 |
+
pretty_text = json.dumps(parsed_json, indent=2, ensure_ascii=False)
|
490 |
+
except json.JSONDecodeError as json_e:
|
491 |
+
print(f" - ⚠️ OpenAI response was not valid JSON: {json_e}")
|
492 |
+
print(f" - Raw response: {raw_json_text}")
|
493 |
+
pretty_text = json.dumps({"error": "Failed to parse OpenAI JSON response", "raw_output": raw_json_text}, indent=2, ensure_ascii=False)
|
494 |
+
|
495 |
+
except Exception as api_e:
|
496 |
+
print(f" - ⚠️ Error calling OpenAI API: {api_e}")
|
497 |
+
pretty_text = json.dumps({"error": "Failed to call OpenAI API", "details": str(api_e)}, indent=2, ensure_ascii=False)
|
498 |
+
|
499 |
+
else: # Final attempt to correct indentation for the final else
|
500 |
+
print(f" - ⚠️ Unsupported structure model: {structure_model}. Skipping structuring.")
|
501 |
+
# Fallback: return the basic OCR markdown wrapped in JSON
|
502 |
+
pretty_text = json.dumps({"unstructured_ocr": image_ocr_markdown}, indent=2, ensure_ascii=False)
|
503 |
+
|
504 |
+
return pretty_text
|
505 |
+
|
506 |
+
try:
|
507 |
+
# Pass the actual structure model name to the inner function if needed,
|
508 |
+
# or rely on the outer scope variable 'structure_model' as done here.
|
509 |
+
result = retry_with_backoff(run_ocr_and_parse, retries=4)
|
510 |
+
image_ocr_results[(page_idx, img.id)] = result
|
511 |
+
except Exception as e:
|
512 |
+
print(f"❌ Failed at page {page_idx+1}, image {i+1}: {e}")
|
513 |
+
|
514 |
+
# Reorganize results by page
|
515 |
+
ocr_by_page = {}
|
516 |
+
for (page_idx, img_id), ocr_text in image_ocr_results.items():
|
517 |
+
ocr_by_page.setdefault(page_idx, {})[img_id] = ocr_text
|
518 |
+
print(f" - Successfully processed page {page_idx+1}, image {i+1} with {structure_model}.")
|
519 |
+
|
520 |
+
return ocr_by_page
|
521 |
+
|
522 |
+
# ===== Checkpoint Functions =====
|
523 |
+
|
524 |
+
def save_checkpoint(data, filename, console_output=None):
|
525 |
+
"""Save data to a checkpoint file."""
|
526 |
+
with open(filename, 'wb') as f:
|
527 |
+
pickle.dump(data, f)
|
528 |
+
message = f"✅ 已儲存檢查點:{filename}"
|
529 |
+
print(message) # Corrected indentation
|
530 |
+
# Removed console_output append
|
531 |
+
return message # Return message
|
532 |
+
|
533 |
+
def load_checkpoint(filename, console_output=None):
|
534 |
+
"""Load data from a checkpoint file."""
|
535 |
+
if os.path.exists(filename):
|
536 |
+
with open(filename, 'rb') as f:
|
537 |
+
data = pickle.load(f)
|
538 |
+
message = f"✅ 已載入檢查點:{filename}"
|
539 |
+
print(message)
|
540 |
+
# Removed console_output append
|
541 |
+
return data, message # Return message
|
542 |
+
return None, None # Return None message
|
543 |
+
|
544 |
+
# ===== Main Processing Function =====
|
545 |
+
|
546 |
+
# Updated function signature to include structure_text_only
|
547 |
+
def process_pdf_to_markdown(
|
548 |
+
pdf_path,
|
549 |
+
mistral_client,
|
550 |
+
gemini_client,
|
551 |
+
openai_client,
|
552 |
+
ocr_model="mistral-ocr-latest",
|
553 |
+
structure_model="pixtral-12b-latest",
|
554 |
+
structure_text_only=False, # Added structure_text_only
|
555 |
+
translation_model="gemini-2.0-flash",
|
556 |
+
translation_system_prompt=None,
|
557 |
+
process_images=True,
|
558 |
+
output_formats_selected=None, # New parameter for selected formats
|
559 |
+
output_dir=None,
|
560 |
+
checkpoint_dir=None,
|
561 |
+
use_existing_checkpoints=True
|
562 |
+
):
|
563 |
+
"""Main function to process PDF to markdown with translation. Yields log messages."""
|
564 |
+
if output_formats_selected is None:
|
565 |
+
output_formats_selected = ["中文翻譯", "英文原文"] # Default if not provided
|
566 |
+
|
567 |
+
pdf_file = Path(pdf_path)
|
568 |
+
filename_stem = pdf_file.stem
|
569 |
+
# Sanitize the filename stem here as well
|
570 |
+
sanitized_stem = filename_stem.replace(" ", "_")
|
571 |
+
print(f"--- 開始處理檔案: {pdf_file.name} (Sanitized Stem: {sanitized_stem}) ---") # Console print
|
572 |
+
|
573 |
+
# Output and checkpoint directories are now expected to be set by the caller (Gradio function)
|
574 |
+
# os.makedirs(output_dir, exist_ok=True) # Ensure caller created it
|
575 |
+
# os.makedirs(checkpoint_dir, exist_ok=True) # Ensure caller created it
|
576 |
+
|
577 |
+
# Checkpoint files - Use sanitized_stem
|
578 |
+
pdf_ocr_checkpoint = os.path.join(checkpoint_dir, f"{sanitized_stem}_pdf_ocr.pkl")
|
579 |
+
image_ocr_checkpoint = os.path.join(checkpoint_dir, f"{sanitized_stem}_image_ocr.pkl")
|
580 |
+
# Checkpoint for raw page data (list of tuples: (raw_markdown_text, images_dict))
|
581 |
+
raw_page_data_checkpoint = os.path.join(checkpoint_dir, f"{sanitized_stem}_raw_page_data.pkl")
|
582 |
+
|
583 |
+
# Step 1: Process PDF with OCR (with checkpoint)
|
584 |
+
pdf_response = None
|
585 |
+
load_msg = None
|
586 |
+
if use_existing_checkpoints:
|
587 |
+
pdf_response, load_msg = load_checkpoint(pdf_ocr_checkpoint) # Get message
|
588 |
+
if load_msg: yield load_msg # Yield message
|
589 |
+
|
590 |
+
if pdf_response is None:
|
591 |
+
msg = "🔍 正在處理 PDF OCR..."
|
592 |
+
yield msg
|
593 |
+
print(msg) # Console print
|
594 |
+
pdf_response = process_pdf_with_mistral_ocr(pdf_path, mistral_client, model=ocr_model)
|
595 |
+
save_msg = save_checkpoint(pdf_response, pdf_ocr_checkpoint) # save_checkpoint already prints
|
596 |
+
if save_msg: yield save_msg # Yield message
|
597 |
+
else:
|
598 |
+
print("ℹ️ 使用現有 PDF OCR 檢查點。")
|
599 |
+
|
600 |
+
# Step 2: Process images with OCR (with checkpoint)
|
601 |
+
ocr_by_page = {}
|
602 |
+
if process_images:
|
603 |
+
load_msg = None
|
604 |
+
if use_existing_checkpoints:
|
605 |
+
ocr_by_page, load_msg = load_checkpoint(image_ocr_checkpoint) # Get message
|
606 |
+
if load_msg: yield load_msg # Yield message
|
607 |
+
|
608 |
+
if ocr_by_page is None or not ocr_by_page: # Check if empty dict from checkpoint or explicitly empty
|
609 |
+
msg = f"🖼️ 正在使用 '{structure_model}' 處理圖片 OCR 與結構化..."
|
610 |
+
yield msg
|
611 |
+
print(msg) # Console print
|
612 |
+
# Pass gemini_client and correct structure_model parameter name
|
613 |
+
ocr_by_page = process_images_with_ocr(
|
614 |
+
pdf_response,
|
615 |
+
mistral_client,
|
616 |
+
gemini_client,
|
617 |
+
openai_client,
|
618 |
+
structure_model=structure_model,
|
619 |
+
structure_text_only=structure_text_only # Pass the text-only flag
|
620 |
+
)
|
621 |
+
save_msg = save_checkpoint(ocr_by_page, image_ocr_checkpoint) # save_checkpoint already prints
|
622 |
+
if save_msg: yield save_msg # Yield message
|
623 |
+
else:
|
624 |
+
print("ℹ️ 使用現有圖片 OCR 檢查點。")
|
625 |
+
else:
|
626 |
+
print("ℹ️ 跳過圖片 OCR 處理。") # process_images was False
|
627 |
+
|
628 |
+
# Step 3: Create or load RAW page data (markdown text + image dicts)
|
629 |
+
raw_page_data = None # List of tuples: (raw_markdown_text, images_dict)
|
630 |
+
load_msg = None
|
631 |
+
if use_existing_checkpoints:
|
632 |
+
# Try loading the raw page data checkpoint
|
633 |
+
raw_page_data, load_msg = load_checkpoint(raw_page_data_checkpoint)
|
634 |
+
if load_msg: yield load_msg
|
635 |
+
|
636 |
+
if raw_page_data is None:
|
637 |
+
msg = "📝 正在建立原始頁面資料 (Markdown + 圖片資訊)..."
|
638 |
+
yield msg
|
639 |
+
print(msg)
|
640 |
+
raw_page_data = []
|
641 |
+
for page_idx, page in enumerate(pdf_response.pages):
|
642 |
+
images_dict = {img.id: img.image_base64 for img in page.images}
|
643 |
+
raw_md_text = page.markdown # Just the raw text with 
|
644 |
+
raw_page_data.append((raw_md_text, images_dict)) # Store as tuple
|
645 |
+
|
646 |
+
# Save the RAW page data checkpoint
|
647 |
+
save_msg = save_checkpoint(raw_page_data, raw_page_data_checkpoint)
|
648 |
+
if save_msg: yield save_msg
|
649 |
+
else:
|
650 |
+
print("ℹ️ 使用現有原始頁面資料檢查點。")
|
651 |
+
|
652 |
+
# Step 3.5: Conditionally insert image OCR results based on CURRENT UI selection
|
653 |
+
pages_after_ocr_insertion = [] # List to hold markdown strings after potential OCR insertion
|
654 |
+
if process_images and ocr_by_page: # Check if UI wants OCR AND if OCR results exist
|
655 |
+
msg = "✍️ 根據目前設定,正在將圖片 OCR 結果插入 Markdown..."
|
656 |
+
yield msg
|
657 |
+
print(msg)
|
658 |
+
for page_idx, (raw_md, _) in enumerate(raw_page_data): # Iterate through raw data
|
659 |
+
# Insert OCR results into the raw markdown text BEFORE replacing links
|
660 |
+
md_with_ocr = insert_ocr_below_images(raw_md, ocr_by_page, page_idx)
|
661 |
+
pages_after_ocr_insertion.append(md_with_ocr)
|
662 |
+
else:
|
663 |
+
# If not inserting OCR, just use the raw markdown text
|
664 |
+
if process_images and not ocr_by_page:
|
665 |
+
msg = "ℹ️ 已勾選處理圖片 OCR,但無圖片 OCR 結果可插入 (可能需要重新執行圖片 OCR)。"
|
666 |
+
yield msg
|
667 |
+
print(msg)
|
668 |
+
elif not process_images:
|
669 |
+
msg = "ℹ️ 未勾選處理圖片 OCR,跳過插入步驟。"
|
670 |
+
yield msg
|
671 |
+
print(msg)
|
672 |
+
# Use the raw markdown text directly
|
673 |
+
pages_after_ocr_insertion = [raw_md for raw_md, _ in raw_page_data]
|
674 |
+
|
675 |
+
# Step 3.6: Save images and replace links in the (potentially modified) markdown
|
676 |
+
final_markdown_pages = [] # This list will have final file paths as links
|
677 |
+
# Use sanitized_stem for image folder name
|
678 |
+
image_folder_name = os.path.join(output_dir, f"images_{sanitized_stem}")
|
679 |
+
msg = f"🖼️ 正在儲存圖片並更新 Markdown 連結至 '{os.path.basename(image_folder_name)}'..."
|
680 |
+
yield msg
|
681 |
+
print(msg)
|
682 |
+
# Iterate using the pages_after_ocr_insertion list and the original image dicts from raw_page_data
|
683 |
+
for page_idx, (md_to_link, (_, images_dict)) in enumerate(zip(pages_after_ocr_insertion, raw_page_data)):
|
684 |
+
# Now save images and replace links on the processed markdown (which might have OCR inserted)
|
685 |
+
final_md = save_images_and_replace_links(md_to_link, images_dict, page_idx, image_folder=image_folder_name)
|
686 |
+
final_markdown_pages.append(final_md)
|
687 |
+
|
688 |
+
# Step 4: Translate the final markdown pages
|
689 |
+
translated_markdown_pages = None # Initialize
|
690 |
+
need_translation = "中文翻譯" in output_formats_selected
|
691 |
+
if need_translation:
|
692 |
+
# Translate the final list with correct image links, passing both clients
|
693 |
+
translation_generator = translate_markdown_pages(
|
694 |
+
final_markdown_pages,
|
695 |
+
gemini_client,
|
696 |
+
openai_client, # Pass openai_client
|
697 |
+
model=translation_model,
|
698 |
+
system_instruction=translation_system_prompt
|
699 |
+
)
|
700 |
+
# Collect yielded pages from the translation generator
|
701 |
+
translated_markdown_pages = [] # Initialize list to store results
|
702 |
+
for item in translation_generator:
|
703 |
+
# Check if it's a progress string or actual content/error
|
704 |
+
# Simple check: assume non-empty strings starting with specific emojis are progress/status
|
705 |
+
if isinstance(item, str) and (item.startswith("🔁") or item.startswith("⚠️") or item.startswith("✅")):
|
706 |
+
yield item # Forward progress/status string
|
707 |
+
else:
|
708 |
+
# Assume it's translated content or an error marker page
|
709 |
+
translated_markdown_pages.append(item)
|
710 |
+
else:
|
711 |
+
yield "ℹ️ 跳過翻譯步驟 (未勾選中文翻譯)。"
|
712 |
+
print("ℹ️ 跳過翻譯步驟 (未勾選中文翻譯)。")
|
713 |
+
translated_markdown_pages = None # Ensure it's None if skipped
|
714 |
+
|
715 |
+
# Step 5: Combine pages into complete markdown strings
|
716 |
+
# The "original" output now correctly reflects the final state before translation
|
717 |
+
final_markdown_original = "\n\n---\n\n".join(final_markdown_pages) # Use the final pages with links
|
718 |
+
final_markdown_translated = "\n\n---\n\n".join(translated_markdown_pages) if translated_markdown_pages else None
|
719 |
+
|
720 |
+
# Step 6: Save files based on selection - Use sanitized_stem
|
721 |
+
saved_files = {}
|
722 |
+
if "英文原文" in output_formats_selected:
|
723 |
+
original_md_name = os.path.join(output_dir, f"{sanitized_stem}_original.md")
|
724 |
+
try:
|
725 |
+
with open(original_md_name, "w", encoding="utf-8") as f:
|
726 |
+
f.write(final_markdown_original)
|
727 |
+
msg = f"✅ 已儲存原文版:{original_md_name}"
|
728 |
+
yield msg
|
729 |
+
print(msg) # Console print
|
730 |
+
saved_files["original_file"] = original_md_name
|
731 |
+
except Exception as e:
|
732 |
+
msg = f"❌ 儲存原文版失敗: {e}"
|
733 |
+
yield msg
|
734 |
+
print(msg)
|
735 |
+
|
736 |
+
if "中文翻譯" in output_formats_selected and final_markdown_translated:
|
737 |
+
translated_md_name = os.path.join(output_dir, f"{sanitized_stem}_translated.md")
|
738 |
+
try:
|
739 |
+
with open(translated_md_name, "w", encoding="utf-8") as f:
|
740 |
+
f.write(final_markdown_translated)
|
741 |
+
msg = f"✅ 已儲存翻譯版:{translated_md_name}"
|
742 |
+
yield msg
|
743 |
+
print(msg) # Console print
|
744 |
+
saved_files["translated_file"] = translated_md_name
|
745 |
+
except Exception as e:
|
746 |
+
msg = f"❌ 儲存翻譯版失敗: {e}"
|
747 |
+
yield msg
|
748 |
+
print(msg)
|
749 |
+
|
750 |
+
# Always report image folder path if it was created (i.e., if images existed and were saved)
|
751 |
+
# The folder creation happens in save_images_and_replace_links
|
752 |
+
image_folder_name = os.path.join(output_dir, f"images_{sanitized_stem}")
|
753 |
+
if os.path.isdir(image_folder_name): # Check if the folder actually exists
|
754 |
+
msg = f"✅ 圖片資料夾:{image_folder_name}"
|
755 |
+
yield msg
|
756 |
+
print(msg) # Console print
|
757 |
+
saved_files["image_folder"] = image_folder_name
|
758 |
+
# else: # Optional: Log if folder wasn't created (e.g., PDF had no images)
|
759 |
+
# msg = f"ℹ️ PDF 文件不包含圖片,未建立圖片資料夾。"
|
760 |
+
# yield msg
|
761 |
+
# print(msg)
|
762 |
+
|
763 |
+
|
764 |
+
print(f"--- 完成處理檔案: {pdf_file.name} ---") # Console print
|
765 |
+
|
766 |
+
# Return the final result dictionary for Gradio UI update
|
767 |
+
yield {
|
768 |
+
"saved_files": saved_files, # Dictionary of saved file paths
|
769 |
+
"translated_content": final_markdown_translated,
|
770 |
+
"original_content": final_markdown_original,
|
771 |
+
"output_formats_selected": output_formats_selected # Pass back selections
|
772 |
+
}
|
773 |
+
|
774 |
+
# ===== Gradio Interface =====
|
775 |
+
|
776 |
+
def create_gradio_interface():
|
777 |
+
"""Create a Gradio interface for the PDF to Markdown tool."""
|
778 |
+
|
779 |
+
# Client initialization is now moved inside process_pdf
|
780 |
+
|
781 |
+
# Define processing function for Gradio
|
782 |
+
def process_pdf( # Updated signature to accept API keys and return file paths + log
|
783 |
+
pdf_file,
|
784 |
+
# API Keys from UI
|
785 |
+
mistral_api_key_input,
|
786 |
+
gemini_api_key_input,
|
787 |
+
openai_api_key_input,
|
788 |
+
# Other parameters
|
789 |
+
ocr_model,
|
790 |
+
structure_model,
|
791 |
+
translation_model,
|
792 |
+
translation_system_prompt,
|
793 |
+
process_images,
|
794 |
+
output_format, # CheckboxGroup list
|
795 |
+
use_existing_checkpoints,
|
796 |
+
structure_text_only
|
797 |
+
): # -> tuple[str | None, str | None, str | None, str]:
|
798 |
+
# Accumulate logs for console output
|
799 |
+
log_accumulator = ""
|
800 |
+
mistral_client = None
|
801 |
+
gemini_client = None
|
802 |
+
openai_client = None
|
803 |
+
print("\n--- Gradio 處理請求開始 ---") # Console print
|
804 |
+
# Placeholders for file outputs and log
|
805 |
+
output_original_md_path = None
|
806 |
+
output_translated_md_path = None
|
807 |
+
output_images_zip_path = None
|
808 |
+
|
809 |
+
# --- Early Exit Checks ---
|
810 |
+
if pdf_file is None:
|
811 |
+
log_accumulator += "❌ 請先上傳 PDF 檔案\n"
|
812 |
+
print("❌ 錯誤:未上傳 PDF 檔案")
|
813 |
+
# Return Nones for files/previews and the error log (6 values total)
|
814 |
+
yield None, None, None, None, None, "❌ 錯誤:未上傳 PDF 檔案\n" + log_accumulator
|
815 |
+
return
|
816 |
+
|
817 |
+
# --- API Key and Client Initialization ---
|
818 |
+
log_accumulator += "🔑 正在初始化 API Clients...\n"
|
819 |
+
# Yield updates for the log output only (6 values total)
|
820 |
+
yield gr.update(), gr.update(), gr.update(), gr.update(), gr.update(), log_accumulator
|
821 |
+
|
822 |
+
# Mistral (Required)
|
823 |
+
if not mistral_api_key_input:
|
824 |
+
log_accumulator += "❌ 錯誤:請務必提供 Mistral API Key。\n"
|
825 |
+
print("❌ 錯誤:未提供 Mistral API Key")
|
826 |
+
# Yield Nones for files/previews and the error log (6 values total)
|
827 |
+
yield None, None, None, None, None, log_accumulator
|
828 |
+
return
|
829 |
+
try:
|
830 |
+
mistral_client = Mistral(api_key=mistral_api_key_input)
|
831 |
+
log_accumulator += "✅ Mistral Client 初始化成功。\n"
|
832 |
+
print("✅ Mistral Client initialized.")
|
833 |
+
except Exception as e:
|
834 |
+
log_accumulator += f"❌ 初始化 Mistral Client 失敗: {e}\n"
|
835 |
+
print(f"❌ Error initializing Mistral Client: {e}")
|
836 |
+
# Yield Nones for files/previews and the error log (6 values total)
|
837 |
+
yield None, None, None, None, None, log_accumulator
|
838 |
+
return
|
839 |
+
|
840 |
+
# Gemini (Optional, depends on model selection later)
|
841 |
+
if gemini_api_key_input:
|
842 |
+
try:
|
843 |
+
gemini_client = genai.Client(api_key=gemini_api_key_input)
|
844 |
+
log_accumulator += "✅ Gemini Client 初始化成功。\n"
|
845 |
+
print("✅ Gemini Client initialized.")
|
846 |
+
except Exception as e:
|
847 |
+
log_accumulator += f"⚠️ 初始化 Gemini Client 失敗 (若未使用 Gemini 模型可忽略): {e}\n"
|
848 |
+
print(f"⚠️ Error initializing Gemini Client (ignore if not using Gemini models): {e}")
|
849 |
+
gemini_client = None # Ensure it's None if init fails
|
850 |
+
else:
|
851 |
+
log_accumulator += "ℹ️ 未提供 Gemini API Key,將無法使用 Gemini 模型。\n"
|
852 |
+
print("ℹ️ Gemini API Key not provided.")
|
853 |
+
gemini_client = None
|
854 |
+
|
855 |
+
# OpenAI (Optional, depends on model selection later)
|
856 |
+
if openai_api_key_input and OpenAI:
|
857 |
+
try:
|
858 |
+
openai_client = OpenAI(api_key=openai_api_key_input)
|
859 |
+
log_accumulator += "✅ OpenAI Client 初始化成功。\n"
|
860 |
+
print("✅ OpenAI Client initialized.")
|
861 |
+
except Exception as e:
|
862 |
+
log_accumulator += f"⚠️ 初始化 OpenAI Client 失敗 (若未使用 OpenAI 模型可忽略): {e}\n"
|
863 |
+
print(f"⚠️ Error initializing OpenAI Client (ignore if not using OpenAI models): {e}")
|
864 |
+
openai_client = None # Ensure it's None if init fails
|
865 |
+
elif not OpenAI:
|
866 |
+
log_accumulator += "ℹ️ OpenAI library 未安裝,無法使用 OpenAI 模型。\n"
|
867 |
+
print("ℹ️ OpenAI library not installed.")
|
868 |
+
openai_client = None
|
869 |
+
else:
|
870 |
+
log_accumulator += "ℹ️ 未提供 OpenAI API Key,將無法使用 OpenAI 模型。\n"
|
871 |
+
print("ℹ️ OpenAI API Key not provided.")
|
872 |
+
openai_client = None
|
873 |
+
# --- End API Key and Client Initialization ---
|
874 |
+
|
875 |
+
|
876 |
+
if not output_format:
|
877 |
+
log_accumulator += "❌ 請至少選擇一種輸出格式(中文翻譯 或 英文原文)\n"
|
878 |
+
print("❌ 錯誤:未選擇輸出格式")
|
879 |
+
# Yield Nones for files/previews and the error log (6 values total)
|
880 |
+
yield None, None, None, None, None, "❌ 錯誤:未選擇輸出格式\n" + log_accumulator
|
881 |
+
return
|
882 |
+
|
883 |
+
pdf_path_obj = Path(pdf_file.name) # Use pdf_file.name for Path object with temp files
|
884 |
+
filename_stem = pdf_path_obj.stem
|
885 |
+
# Sanitize the filename stem (replace spaces with underscores)
|
886 |
+
sanitized_stem = filename_stem.replace(" ", "_")
|
887 |
+
print(f"收到檔案: {pdf_path_obj.name} (Sanitized Stem: {sanitized_stem})") # Console print
|
888 |
+
print(f"選擇的輸出格式: {output_format}")
|
889 |
+
|
890 |
+
# --- Output Directory Logic (Using Temp Dir for Gradio Compatibility) ---
|
891 |
+
try:
|
892 |
+
# Create a unique temporary directory for this run's outputs
|
893 |
+
# This directory will be inside Gradio's allowed paths (/tmp)
|
894 |
+
temp_base_dir = tempfile.mkdtemp()
|
895 |
+
output_dir = os.path.join(temp_base_dir, "outputs") # Subdir for final files
|
896 |
+
checkpoint_dir = os.path.join(temp_base_dir, f"checkpoints_{sanitized_stem}") # Subdir for checkpoints
|
897 |
+
|
898 |
+
os.makedirs(output_dir, exist_ok=True)
|
899 |
+
os.makedirs(checkpoint_dir, exist_ok=True)
|
900 |
+
log_accumulator += f"📂 使用暫存輸出目錄: {output_dir}\n"
|
901 |
+
log_accumulator += f"💾 使用暫存檢查點目錄: {checkpoint_dir}\n"
|
902 |
+
print(f"Using temporary output directory: {output_dir}")
|
903 |
+
print(f"Using temporary checkpoint directory: {checkpoint_dir}")
|
904 |
+
|
905 |
+
except Exception as e:
|
906 |
+
error_msg = f"❌ 無法建立暫存目錄: {e}"
|
907 |
+
log_accumulator += f"{error_msg}\n"
|
908 |
+
print(f"❌ 錯誤:{error_msg}")
|
909 |
+
# Yield Nones for files/previews and the error log (6 values total)
|
910 |
+
yield None, None, None, None, None, f"❌ 錯誤:{error_msg}\n" + log_accumulator
|
911 |
+
return
|
912 |
+
# --- End Output Directory Logic ---
|
913 |
+
|
914 |
+
|
915 |
+
# --- Initial Log Messages ---
|
916 |
+
# Yield updates for the log output only (6 values total)
|
917 |
+
log_accumulator += f"🚀 開始處理 PDF: {pdf_path_obj.name}\n"
|
918 |
+
yield gr.update(), gr.update(), gr.update(), gr.update(), gr.update(), log_accumulator
|
919 |
+
# Log the temp dirs being used
|
920 |
+
log_accumulator += f"📂 使用暫存輸出目錄: {output_dir}\n" # Added log message back
|
921 |
+
yield gr.update(), gr.update(), gr.update(), gr.update(), gr.update(), log_accumulator
|
922 |
+
log_accumulator += f"💾 使用暫存檢查點目錄: {checkpoint_dir}\n" # Added log message back
|
923 |
+
yield gr.update(), gr.update(), gr.update(), gr.update(), gr.update(), log_accumulator
|
924 |
+
|
925 |
+
# Determine if translation is needed based on CheckboxGroup selection
|
926 |
+
# The 'translate' checkbox is now less relevant, primary control is output_format
|
927 |
+
need_translation_for_processing = "中文翻譯" in output_format
|
928 |
+
log_accumulator += "✅ 將產生中文翻譯\n" if need_translation_for_processing else "ℹ️ 不產生中文翻譯 (未勾選)\n"
|
929 |
+
yield gr.update(), gr.update(), gr.update(), gr.update(), gr.update(), log_accumulator
|
930 |
+
log_accumulator += "✅ 使用現有檢查點(如果存在)\n" if use_existing_checkpoints else "🔄 重新處理所有步驟(不使用現有檢查點)\n"
|
931 |
+
yield gr.update(), gr.update(), gr.update(), gr.update(), gr.update(), log_accumulator
|
932 |
+
print(f"需要翻譯: {need_translation_for_processing}, 使用檢查點: {use_existing_checkpoints}")
|
933 |
+
|
934 |
+
# --- Main Processing ---
|
935 |
+
try:
|
936 |
+
# process_pdf_to_markdown is a generator, iterate through its yields
|
937 |
+
processor = process_pdf_to_markdown(
|
938 |
+
pdf_path=pdf_file, # Pass the file path/object directly
|
939 |
+
mistral_client=mistral_client,
|
940 |
+
gemini_client=gemini_client,
|
941 |
+
openai_client=openai_client,
|
942 |
+
ocr_model=ocr_model,
|
943 |
+
structure_model=structure_model,
|
944 |
+
structure_text_only=structure_text_only, # Pass text-only flag
|
945 |
+
translation_model=translation_model,
|
946 |
+
translation_system_prompt=translation_system_prompt if translation_system_prompt.strip() else None,
|
947 |
+
process_images=process_images,
|
948 |
+
output_formats_selected=output_format, # Pass selected formats
|
949 |
+
output_dir=output_dir,
|
950 |
+
checkpoint_dir=checkpoint_dir,
|
951 |
+
use_existing_checkpoints=use_existing_checkpoints
|
952 |
+
)
|
953 |
+
|
954 |
+
result_data = None
|
955 |
+
# Iterate through the generator from process_pdf_to_markdown
|
956 |
+
for item in processor:
|
957 |
+
if isinstance(item, dict): # Check if it's the final result dict
|
958 |
+
result_data = item
|
959 |
+
# Don't yield the dict itself to the log
|
960 |
+
elif isinstance(item, str):
|
961 |
+
# Append and yield intermediate logs (6 values total)
|
962 |
+
log_accumulator += f"{item}\n"
|
963 |
+
# Yield updates for the log output only
|
964 |
+
yield gr.update(), gr.update(), gr.update(), gr.update(), gr.update(), log_accumulator
|
965 |
+
# Handle potential other types if necessary, otherwise ignore
|
966 |
+
|
967 |
+
# --- Process Final Result for UI ---
|
968 |
+
# This part runs after the processor generator is exhausted
|
969 |
+
if result_data:
|
970 |
+
saved_files_dict = result_data.get("saved_files", {})
|
971 |
+
output_original_md_path = saved_files_dict.get("original_file")
|
972 |
+
output_translated_md_path = saved_files_dict.get("translated_file")
|
973 |
+
image_folder_path = saved_files_dict.get("image_folder") # Gets the folder path
|
974 |
+
|
975 |
+
# Zip the image folder only if the path exists and it's a directory
|
976 |
+
if image_folder_path and os.path.isdir(image_folder_path):
|
977 |
+
log_accumulator += f"ℹ️ 找到圖片資料夾: {image_folder_path},嘗試壓縮...\n"
|
978 |
+
print(f"ℹ️ Found image folder: {image_folder_path}, attempting to zip...")
|
979 |
+
zip_base_name = image_folder_path # Use folder name as base for zip path
|
980 |
+
try:
|
981 |
+
# Ensure the target zip path doesn't conflict if run multiple times in same temp dir context (though mkdtemp should prevent this)
|
982 |
+
output_images_zip_path = shutil.make_archive(zip_base_name, 'zip', root_dir=os.path.dirname(image_folder_path), base_dir=os.path.basename(image_folder_path))
|
983 |
+
log_accumulator += f"✅ 已成功壓縮圖片資料夾:{output_images_zip_path}\n"
|
984 |
+
print(f"✅ Successfully zipped images: {output_images_zip_path}")
|
985 |
+
except Exception as zip_e:
|
986 |
+
error_msg = f"⚠️ 壓縮圖片資料夾 '{image_folder_path}' 失敗: {zip_e}"
|
987 |
+
log_accumulator += f"{error_msg}\n"
|
988 |
+
print(error_msg)
|
989 |
+
output_images_zip_path = None # Ensure it's None if zipping failed
|
990 |
+
else:
|
991 |
+
# Explicitly log if image folder wasn't found or isn't a directory
|
992 |
+
if image_folder_path: # Path exists but not a dir
|
993 |
+
log_accumulator += f"ℹ️ 找到圖片資料夾路徑,但 '{image_folder_path}' 不是有效的資料夾。無法壓縮。\n"
|
994 |
+
print(f"ℹ️ Image folder path found but not a directory: {image_folder_path}. Cannot zip.")
|
995 |
+
else: # Path not found in saved_files (likely no images in PDF or folder wasn't saved)
|
996 |
+
log_accumulator += f"ℹ️ 未找到圖片資料夾路徑 (可能 PDF 無圖片或未儲存)。無法壓縮。\n"
|
997 |
+
print(f"ℹ️ Image folder path not found in saved_files (likely no images in PDF or folder not saved). Cannot zip.")
|
998 |
+
output_images_zip_path = None # Ensure it's None
|
999 |
+
|
1000 |
+
|
1001 |
+
final_log_message = "✅ 處理完成!請查看預覽視窗,或至下載檔案視窗下載檔案。" # Updated message
|
1002 |
+
log_accumulator += f"{final_log_message}\n"
|
1003 |
+
print(f"--- Gradio 處理請求完成 ---")
|
1004 |
+
|
1005 |
+
else:
|
1006 |
+
final_log_message = "⚠️ 處理完成,但未收到預期的結果字典。"
|
1007 |
+
log_accumulator += f"{final_log_message}\n"
|
1008 |
+
print(f"⚠️ 警告:{final_log_message}")
|
1009 |
+
|
1010 |
+
# Final yield: provide paths for file outputs, markdown content for previews, and the final log
|
1011 |
+
yield (
|
1012 |
+
output_original_md_path,
|
1013 |
+
output_translated_md_path,
|
1014 |
+
output_images_zip_path,
|
1015 |
+
result_data.get("original_content", "無原文內容可預覽"), # Content for original preview
|
1016 |
+
result_data.get("translated_content", "無翻譯內容可預覽"), # Content for translated preview
|
1017 |
+
log_accumulator
|
1018 |
+
)
|
1019 |
+
|
1020 |
+
except Exception as e:
|
1021 |
+
error_message = f"❌ Gradio 處理過程中發生未預期錯誤: {str(e)}"
|
1022 |
+
log_accumulator += f"{error_message}\n"
|
1023 |
+
print(f"❌ 嚴重錯誤:{error_message}")
|
1024 |
+
import traceback
|
1025 |
+
traceback.print_exc() # Print full traceback to console
|
1026 |
+
# Final yield in case of error: provide Nones for files/previews and the error log (6 values total)
|
1027 |
+
yield None, None, None, None, None, log_accumulator
|
1028 |
+
|
1029 |
+
# Create Gradio interface
|
1030 |
+
with gr.Blocks(title="Mistral OCR & Translation Tool") as demo:
|
1031 |
+
gr.Markdown("""
|
1032 |
+
# Mistral OCR & 翻譯工具
|
1033 |
+
|
1034 |
+
Convert PDF files to Markdown with OCR and English-to-Chinese translation, powered by Mistral, Gemini, and OpenAI.
|
1035 |
+
將 PDF 文件轉為 Markdown 格式,支援圖片 OCR 和英文到繁體中文翻譯,使用 Mistral、Gemini 和 OpenAI 模型。
|
1036 |
+
""")
|
1037 |
+
|
1038 |
+
with gr.Row():
|
1039 |
+
with gr.Column(scale=1):
|
1040 |
+
pdf_file = gr.File(label="上傳 PDF 檔案", file_types=[".pdf"])
|
1041 |
+
|
1042 |
+
with gr.Accordion("基本設定", open=True):
|
1043 |
+
# Define default path for placeholder clarity
|
1044 |
+
default_output_path_display = os.path.join("桌面", "MistralOCR_Output") # Simplified for display
|
1045 |
+
# Output directory is now handled internally using tempfile, remove UI element
|
1046 |
+
# output_dir = gr.Textbox(
|
1047 |
+
# label="輸出目錄 (請貼上完整路徑)",
|
1048 |
+
# placeholder=f"留空預設儲存至:{default_output_path_display}",
|
1049 |
+
# info="將所有輸出檔案 (Markdown, 圖片, 檢查點) 儲存於此目錄。",
|
1050 |
+
# value="" # Default logic remains in process_pdf
|
1051 |
+
# )
|
1052 |
+
|
1053 |
+
use_existing_checkpoints = gr.Checkbox(
|
1054 |
+
label="使用現有檢查點(如果存在)",
|
1055 |
+
value=True,
|
1056 |
+
info="啟用後,如果檢查點存在,將跳過已完成的步驟。"
|
1057 |
+
)
|
1058 |
+
|
1059 |
+
output_format = gr.CheckboxGroup(
|
1060 |
+
label="輸出格式 (可多選)",
|
1061 |
+
choices=["中文翻譯", "英文原文"],
|
1062 |
+
value=["中文翻譯", "英文原文"], # Default to both
|
1063 |
+
info="選擇您需要儲存的 Markdown 檔案格式。"
|
1064 |
+
)
|
1065 |
+
|
1066 |
+
with gr.Accordion("API Keys (請自行填入)", open=True):
|
1067 |
+
mistral_api_key_input = gr.Textbox(
|
1068 |
+
label="Mistral API Key",
|
1069 |
+
type="password",
|
1070 |
+
placeholder="請貼上你的 Mistral API Key",
|
1071 |
+
info="(必要) 用於 PDF 和圖片 OCR。請從 https://console.mistral.ai/ 獲取。���金鑰僅用於本次處理,不會儲存。"
|
1072 |
+
)
|
1073 |
+
gemini_api_key_input = gr.Textbox(
|
1074 |
+
label="Gemini API Key",
|
1075 |
+
type="password",
|
1076 |
+
placeholder="請貼上你的 Gemini API Key",
|
1077 |
+
info="(推薦) 若選擇 Gemini 模型進行翻譯或結構化,則需要。請從 https://aistudio.google.com/app/apikey 獲取。此金鑰僅用於本次處理,不會儲存。"
|
1078 |
+
)
|
1079 |
+
openai_api_key_input = gr.Textbox(
|
1080 |
+
label="OpenAI API Key",
|
1081 |
+
type="password",
|
1082 |
+
placeholder="請貼上你的 OpenAI API Key",
|
1083 |
+
info="(可選) 若選擇 GPT 模型進行翻譯或結構化,則需要。請從 https://platform.openai.com/api-keys 獲取。此金鑰僅用於本次處理,不會儲存。"
|
1084 |
+
)
|
1085 |
+
|
1086 |
+
|
1087 |
+
with gr.Accordion("處理選項", open=False):
|
1088 |
+
process_images = gr.Checkbox(
|
1089 |
+
label="處理圖片 OCR",
|
1090 |
+
value=True,
|
1091 |
+
info="啟用後,將對 PDF 中的圖片額外進行 OCR 辨識"
|
1092 |
+
)
|
1093 |
+
|
1094 |
+
|
1095 |
+
|
1096 |
+
with gr.Accordion("模型設定", open=True):
|
1097 |
+
ocr_model = gr.Dropdown(
|
1098 |
+
label="OCR 模型",
|
1099 |
+
choices=["mistral-ocr-latest"],
|
1100 |
+
value="mistral-ocr-latest"
|
1101 |
+
)
|
1102 |
+
structure_model = gr.Dropdown(
|
1103 |
+
label="結構化模型 (用於圖片 OCR)",
|
1104 |
+
choices=["pixtral-12b-latest", "gemini-2.0-flash", "gpt-4o-mini", "gpt-4o"], # Added gpt-4o
|
1105 |
+
value="gemini-2.0-flash",
|
1106 |
+
info="選擇用於結構化圖片 OCR 結果的模型。需要對應的 API Key。"
|
1107 |
+
)
|
1108 |
+
structure_text_only = gr.Checkbox(
|
1109 |
+
label="僅用文字進行結構化 (節省 Token)",
|
1110 |
+
value=False,
|
1111 |
+
info="勾選後,僅將圖片的初步 OCR 文字傳送給 Gemini 或 OpenAI 進行結構化,不傳送圖片本身。對 Pixtral 無效。⚠️注意:缺少圖片視覺資訊可能導致結構化效果不佳,建議僅在 OCR 文字已足夠清晰時使用。"
|
1112 |
+
)
|
1113 |
+
translation_model = gr.Dropdown(
|
1114 |
+
label="翻譯模型",
|
1115 |
+
choices=[
|
1116 |
+
"gemini-2.0-flash",
|
1117 |
+
"gemini-2.5-pro-exp-03-25",
|
1118 |
+
"gemini-2.0-flash-lite",
|
1119 |
+
"gpt-4o", # Added OpenAI models
|
1120 |
+
"gpt-4o-mini"
|
1121 |
+
],
|
1122 |
+
value="gemini-2.0-flash"
|
1123 |
+
)
|
1124 |
+
with gr.Accordion("進階設定", open=False):
|
1125 |
+
translation_system_prompt = gr.Textbox(
|
1126 |
+
label="翻譯系統提示詞",
|
1127 |
+
value=DEFAULT_TRANSLATION_SYSTEM_INSTRUCTION,
|
1128 |
+
lines=10
|
1129 |
+
)
|
1130 |
+
|
1131 |
+
process_button = gr.Button("開始處理", variant="primary")
|
1132 |
+
|
1133 |
+
with gr.Column(scale=2):
|
1134 |
+
with gr.Tab("處理日誌"):
|
1135 |
+
console_output = gr.Textbox(
|
1136 |
+
label="處理進度",
|
1137 |
+
lines=20,
|
1138 |
+
max_lines=50,
|
1139 |
+
interactive=False,
|
1140 |
+
autoscroll=True
|
1141 |
+
)
|
1142 |
+
with gr.Tab("使用說明"):
|
1143 |
+
|
1144 |
+
gr.Markdown("""
|
1145 |
+
# 使用說明
|
1146 |
+
|
1147 |
+
1. 上傳 PDF 檔案(可拖曳或點擊上傳)
|
1148 |
+
2. 輸入 Mistral API 金鑰(必要)及 Gemini/OpenAI 金鑰(可選)
|
1149 |
+
3. 基本設定:
|
1150 |
+
- 選擇是否使用現有檢查點(預設啟用)
|
1151 |
+
- 選擇輸出格式(中文翻譯、英文原文,可多選)
|
1152 |
+
4. 處理選項:
|
1153 |
+
- 選擇是否處理圖片 OCR(預設啟用)
|
1154 |
+
5. 模型與進階設定(可選):
|
1155 |
+
- 選擇 OCR、結構化、翻譯模型
|
1156 |
+
- 修改翻譯提示詞(若需其他語言)
|
1157 |
+
6. 點擊「開始處理」按鈕
|
1158 |
+
7. 於「處理日誌」標籤查看進度,完成後從「下載檔案」標籤下載結果
|
1159 |
+
|
1160 |
+
## 檢查點說明
|
1161 |
+
|
1162 |
+
- **PDF OCR 檢查點**:儲存 PDF 的 OCR 結果
|
1163 |
+
- **圖片 OCR 檢查點**:儲存圖片的 OCR 結構化結果
|
1164 |
+
- 若需重新處理,可取消勾選「使用現有檢查點」
|
1165 |
+
|
1166 |
+
## 輸出檔案
|
1167 |
+
|
1168 |
+
- `[檔名]_original.md`:英文原文 Markdown
|
1169 |
+
- `[檔名]_translated.md`:繁體中文翻譯 Markdown
|
1170 |
+
- `images_[檔名].zip`:PDF 中提取的圖片
|
1171 |
+
|
1172 |
+
## API 使用量參考(粗略估計)
|
1173 |
+
|
1174 |
+
以下為兩個實際測試場景的 API 使用情況,可供預估大致耗用量:
|
1175 |
+
|
1176 |
+
### 測試場景一(Gemini 全流程)
|
1177 |
+
|
1178 |
+
- **PDF 範例**:Jones & Bergen (2025) 論文前 3 頁(含 1 張圖片)
|
1179 |
+
- **Mistral OCR**:消耗約 **4 Pages**(含圖片額外一次處理)
|
1180 |
+
- **Gemini 2.0 Flash**:
|
1181 |
+
- 結構化 + 翻譯(單模型)
|
1182 |
+
- 輸入 Token 約 **7,300 Tokens**
|
1183 |
+
|
1184 |
+
### 測試場景二(分開處理:Gemini 結構化 + GPT-4o Mini 翻譯)
|
1185 |
+
|
1186 |
+
- **PDF 範例**:同一份 3 頁英文文件(含圖片)
|
1187 |
+
- **Mistral OCR**:消耗約 **4 Pages**
|
1188 |
+
- **Gemini 2.0 Flash**(僅做結構化):
|
1189 |
+
- 輸入 Token 約 **2,357 Tokens**
|
1190 |
+
- **GPT-4o Mini**(做翻譯):
|
1191 |
+
- 輸入 Token 約 **4,440 Tokens**
|
1192 |
+
|
1193 |
+
> **注意**:實際耗用量會根據 PDF 頁數、內容密度、圖片比例與翻譯範圍有所不同,以上數據僅供參考。
|
1194 |
+
|
1195 |
+
測試樣本之一引用:
|
1196 |
+
Jones, C. R., & Bergen, B. K. (2025). *Large Language Models Pass the Turing Test*. *arXiv preprint* [arXiv:2503.23674](https://arxiv.org/abs/2503.23674)
|
1197 |
+
本測試僅借用該論文前 3 頁作為輸入範例進行處理流程測試,未轉載、修改或散佈其內容。
|
1198 |
+
""")
|
1199 |
+
|
1200 |
+
with gr.Tab("預覽原文"): # New Tab for Original Preview
|
1201 |
+
preview_original_md = gr.Markdown(label="預覽原文 Markdown")
|
1202 |
+
|
1203 |
+
with gr.Tab("預覽翻譯"): # New Tab for Translated Preview
|
1204 |
+
preview_translated_md = gr.Markdown(label="預覽翻譯 Markdown")
|
1205 |
+
|
1206 |
+
|
1207 |
+
with gr.Tab("下載檔案"): # Changed Tab name
|
1208 |
+
# Add File output components for downloads
|
1209 |
+
output_original_md = gr.File(label="下載原文 Markdown (.md)")
|
1210 |
+
output_translated_md = gr.File(label="下載翻譯 Markdown (.md)")
|
1211 |
+
output_images_zip = gr.File(label="下載圖片 (.zip)")
|
1212 |
+
with gr.Tab("關於"): # 新增標籤
|
1213 |
+
gr.Markdown("""
|
1214 |
+
## 關於 Mistral OCR 翻譯工具
|
1215 |
+
|
1216 |
+
本工具由 **David Chang** 開發,旨在將 PDF 文件轉換為 Markdown 格式,支援圖片 OCR 和英文到繁體中文的翻譯。整合以下技術:
|
1217 |
+
- **Mistral AI**:PDF 和圖片 OCR
|
1218 |
+
- **Google Gemini / OpenAI**:翻譯與結構化
|
1219 |
+
- **Gradio**:互動式網頁介面
|
1220 |
+
|
1221 |
+
### 版權與授權
|
1222 |
+
- **作者**:David Chang
|
1223 |
+
- **版權**:© 2025 David Chang
|
1224 |
+
- **授權**:MIT 授權,詳見 [LICENSE](https://github.com/dodo13114arch/mistralocr-pdf2md-translator/blob/main/LICENSE)
|
1225 |
+
- **GitHub**:https://github.com/dodo13114arch/mistralocr-pdf2md-translator
|
1226 |
+
|
1227 |
+
### 感謝
|
1228 |
+
感謝 Mistral AI、Google Gemini、OpenAI 和 Gradio 提供的技術支持,以及 Mistral 官方範例的啟發 ([Colab Notebook](https://colab.research.google.com/github/mistralai/cookbook/blob/main/mistral/ocr/structured_ocr.ipynb))。
|
1229 |
+
|
1230 |
+
### 聯繫與反饋
|
1231 |
+
歡迎在 GitHub 上提交問題或建議!
|
1232 |
+
""")
|
1233 |
+
|
1234 |
+
# Define outputs for the click event
|
1235 |
+
# Order must match the final yield in process_pdf:
|
1236 |
+
# file_orig, file_trans, file_zip, preview_orig, preview_trans, console_log
|
1237 |
+
outputs_list = [
|
1238 |
+
output_original_md,
|
1239 |
+
output_translated_md,
|
1240 |
+
output_images_zip,
|
1241 |
+
preview_original_md, # Added output for original preview
|
1242 |
+
preview_translated_md, # Added output for translated preview
|
1243 |
+
console_output
|
1244 |
+
]
|
1245 |
+
|
1246 |
+
# Define inputs for the click event (remove console_output)
|
1247 |
+
inputs_list=[
|
1248 |
+
pdf_file,
|
1249 |
+
# API Key Inputs
|
1250 |
+
mistral_api_key_input,
|
1251 |
+
gemini_api_key_input,
|
1252 |
+
openai_api_key_input,
|
1253 |
+
# Other parameters
|
1254 |
+
ocr_model,
|
1255 |
+
structure_model,
|
1256 |
+
translation_model,
|
1257 |
+
translation_system_prompt,
|
1258 |
+
process_images,
|
1259 |
+
# translate, # Removed
|
1260 |
+
output_format, # CheckboxGroup list
|
1261 |
+
use_existing_checkpoints,
|
1262 |
+
structure_text_only
|
1263 |
+
]
|
1264 |
+
|
1265 |
+
# Use process_button.click with the generator function
|
1266 |
+
process_button.click(
|
1267 |
+
fn=process_pdf,
|
1268 |
+
inputs=inputs_list,
|
1269 |
+
outputs=outputs_list
|
1270 |
+
)
|
1271 |
+
|
1272 |
+
# Add event handler to exit script when UI is closed/unloaded
|
1273 |
+
# Removed inputs and outputs arguments as they are not accepted by unload
|
1274 |
+
# demo.unload(fn=lambda: os._exit(0))
|
1275 |
+
|
1276 |
+
|
1277 |
+
gr.Markdown("""
|
1278 |
+
|
1279 |
+
---
|
1280 |
+
|
1281 |
+
**免責聲明**
|
1282 |
+
本工具僅供學習與研究用途,整合 Mistral、Google Gemini 和 OpenAI API。請確保:
|
1283 |
+
- 您擁有合法的 API 金鑰,並遵守各服務條款([Mistral](https://mistral.ai/terms)、[Gemini](https://ai.google.dev/terms)、[OpenAI](https://openai.com/policies))。
|
1284 |
+
- 上傳的 PDF 文件符合版權法規,您有權進行處理。
|
1285 |
+
- 翻譯結果可能有誤,請自行驗證。
|
1286 |
+
本工具不儲存任何上傳檔案或 API 金鑰,所有處理均在暫存環境中完成。
|
1287 |
+
|
1288 |
+
**版權資訊**
|
1289 |
+
Copyright © 2025 David Chang. 根據 MIT 授權發布,詳見 [LICENSE](https://github.com/dodo13114arch/mistralocr-pdf2md-translator/blob/main/LICENSE)。
|
1290 |
+
GitHub: https://github.com/dodo13114arch/mistralocr-pdf2md-translator
|
1291 |
+
""")
|
1292 |
+
|
1293 |
+
return demo
|
1294 |
+
|
1295 |
+
# ===== Main Execution =====
|
1296 |
+
|
1297 |
+
if __name__ == "__main__":
|
1298 |
+
# Create and launch Gradio interface
|
1299 |
+
demo = create_gradio_interface()
|
1300 |
+
demo.launch()
|
requirements.txt
ADDED
@@ -0,0 +1,64 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
aiofiles==23.2.1
|
2 |
+
annotated-types==0.7.0
|
3 |
+
anyio==4.9.0
|
4 |
+
cachetools==5.5.2
|
5 |
+
certifi==2025.1.31
|
6 |
+
charset-normalizer==3.4.1
|
7 |
+
click==8.1.8
|
8 |
+
distro==1.9.0
|
9 |
+
eval_type_backport==0.2.2
|
10 |
+
exceptiongroup==1.2.2
|
11 |
+
fastapi==0.115.12
|
12 |
+
ffmpy==0.5.0
|
13 |
+
filelock==3.18.0
|
14 |
+
fsspec==2025.3.2
|
15 |
+
google-auth==2.38.0
|
16 |
+
google-genai==1.9.0
|
17 |
+
gradio==5.25.2
|
18 |
+
gradio_client==1.8.2
|
19 |
+
groovy==0.1.2
|
20 |
+
h11==0.14.0
|
21 |
+
httpcore==1.0.7
|
22 |
+
httpx==0.28.1
|
23 |
+
huggingface-hub==0.30.1
|
24 |
+
idna==3.10
|
25 |
+
ipython # Added back for runtime dependency
|
26 |
+
Jinja2==3.1.6
|
27 |
+
jiter==0.9.0
|
28 |
+
markdown-it-py==3.0.0
|
29 |
+
MarkupSafe==3.0.2
|
30 |
+
mdurl==0.1.2
|
31 |
+
mistralai==1.6.0
|
32 |
+
numpy==2.2.4
|
33 |
+
openai==1.73.0
|
34 |
+
orjson==3.10.16
|
35 |
+
pandas==2.2.3
|
36 |
+
pillow==11.1.0
|
37 |
+
pyasn1==0.6.1
|
38 |
+
pyasn1_modules==0.4.2
|
39 |
+
pydantic==2.11.2
|
40 |
+
pydantic_core==2.33.1
|
41 |
+
pydub==0.25.1
|
42 |
+
python-dateutil==2.9.0 # Use latest available version
|
43 |
+
python-dotenv==1.1.0
|
44 |
+
python-multipart==0.0.20
|
45 |
+
pytz==2025.2
|
46 |
+
PyYAML==6.0.2
|
47 |
+
requests==2.32.3
|
48 |
+
rich==14.0.0
|
49 |
+
rsa==4.9
|
50 |
+
ruff==0.11.4
|
51 |
+
safehttpx==0.1.6
|
52 |
+
semantic-version==2.10.0
|
53 |
+
shellingham==1.5.4
|
54 |
+
sniffio==1.3.1
|
55 |
+
starlette==0.46.1
|
56 |
+
tomlkit==0.13.2
|
57 |
+
tqdm==4.67.1
|
58 |
+
typer==0.15.2
|
59 |
+
typing-inspection==0.4.0
|
60 |
+
typing_extensions==4.13.1
|
61 |
+
tzdata==2025.2
|
62 |
+
urllib3==2.3.0
|
63 |
+
uvicorn==0.34.0
|
64 |
+
websockets==15.0.1
|