File size: 12,430 Bytes
988efc8
 
 
 
 
8527388
988efc8
 
 
 
 
 
 
 
 
 
27271e8
 
 
988efc8
 
 
 
 
0f79bfb
988efc8
 
 
 
 
 
 
bcd68a1
988efc8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bcd68a1
988efc8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e6539f9
988efc8
 
 
 
 
 
 
 
 
 
e6539f9
 
 
988efc8
bcd68a1
26217ae
83d10c9
 
 
 
 
 
 
 
 
 
 
 
 
4d2a9aa
 
 
83d10c9
bcd68a1
83d10c9
 
e6539f9
 
988efc8
 
 
 
e6539f9
988efc8
 
 
 
 
e6539f9
988efc8
e6539f9
988efc8
 
 
 
 
bcd68a1
26217ae
988efc8
 
 
bcd68a1
988efc8
 
 
 
 
 
 
 
 
 
 
 
 
bcd68a1
26217ae
988efc8
 
bcd68a1
988efc8
 
 
 
31d67e5
6a68e82
9e071d4
 
e6539f9
 
6a68e82
988efc8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9896238
988efc8
47a7175
 
 
988efc8
31d67e5
988efc8
 
 
 
 
 
 
 
 
 
 
 
e6539f9
 
988efc8
 
 
 
 
 
 
 
 
 
0b3b481
 
 
 
 
 
 
 
988efc8
0b3b481
 
e6539f9
0b3b481
 
 
 
 
c17a234
653000f
 
 
 
988efc8
 
bcd68a1
988efc8
bcd68a1
 
df09626
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
36db39a
 
df09626
 
 
36db39a
 
 
 
 
e6539f9
 
36db39a
 
e6539f9
36db39a
 
 
 
 
 
 
 
 
 
df09626
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
import gradio as gr
import spaces

import os
import shutil
os.environ['TOKENIZERS_PARALLELISM'] = 'true'
os.environ['SPCONV_ALGO'] = 'native'
from typing import *
import torch
import numpy as np
import imageio
from easydict import EasyDict as edict
from trellis.pipelines import TrellisTextTo3DPipeline
from trellis.representations import Gaussian, MeshExtractResult
from trellis.utils import render_utils, postprocessing_utils

import traceback
import sys


MAX_SEED = np.iinfo(np.int32).max
TMP_DIR = os.path.join(os.path.dirname(os.path.abspath(__file__)), 'tmp')
os.makedirs(TMP_DIR, exist_ok=True)


def start_session(req: gr.Request):
    user_dir = os.path.join(TMP_DIR, str(req.session_hash))
    os.makedirs(user_dir, exist_ok=True)
    
    
def end_session(req: gr.Request):
    user_dir = os.path.join(TMP_DIR, str(req.session_hash))
    shutil.rmtree(user_dir)


def pack_state(gs: Gaussian, mesh: MeshExtractResult) -> dict:
    return {
        'gaussian': {
            **gs.init_params,
            '_xyz': gs._xyz.cpu().numpy(),
            '_features_dc': gs._features_dc.cpu().numpy(),
            '_scaling': gs._scaling.cpu().numpy(),
            '_rotation': gs._rotation.cpu().numpy(),
            '_opacity': gs._opacity.cpu().numpy(),
        },
        'mesh': {
            'vertices': mesh.vertices.cpu().numpy(),
            'faces': mesh.faces.cpu().numpy(),
        },
    }
    
    
def unpack_state(state: dict) -> Tuple[Gaussian, edict, str]:
    gs = Gaussian(
        aabb=state['gaussian']['aabb'],
        sh_degree=state['gaussian']['sh_degree'],
        mininum_kernel_size=state['gaussian']['mininum_kernel_size'],
        scaling_bias=state['gaussian']['scaling_bias'],
        opacity_bias=state['gaussian']['opacity_bias'],
        scaling_activation=state['gaussian']['scaling_activation'],
    )
    gs._xyz = torch.tensor(state['gaussian']['_xyz'], device='cuda')
    gs._features_dc = torch.tensor(state['gaussian']['_features_dc'], device='cuda')
    gs._scaling = torch.tensor(state['gaussian']['_scaling'], device='cuda')
    gs._rotation = torch.tensor(state['gaussian']['_rotation'], device='cuda')
    gs._opacity = torch.tensor(state['gaussian']['_opacity'], device='cuda')
    
    mesh = edict(
        vertices=torch.tensor(state['mesh']['vertices'], device='cuda'),
        faces=torch.tensor(state['mesh']['faces'], device='cuda'),
    )
    
    return gs, mesh


def get_seed(randomize_seed: bool, seed: int) -> int:
    """
    Get the random seed.
    """
    return np.random.randint(0, MAX_SEED) if randomize_seed else seed


@spaces.GPU
def text_to_3d(
    prompt: str,
    seed: int,
    ss_guidance_strength: float,
    ss_sampling_steps: int,
    slat_guidance_strength: float,
    slat_sampling_steps: int,
    req: gr.Request,
) -> Tuple[dict, str, dict]:
    """
    Convert an text prompt to a 3D model.
    Args:
        prompt (str): The text prompt.
        seed (int): The random seed.
        ss_guidance_strength (float): The guidance strength for sparse structure generation.
        ss_sampling_steps (int): The number of sampling steps for sparse structure generation.
        slat_guidance_strength (float): The guidance strength for structured latent generation.
        slat_sampling_steps (int): The number of sampling steps for structured latent generation.
    Returns:
        dict: The information of the generated 3D model.
        str: The path to the video of the 3D model.
        dict: The state of the generated 3D model.
    """
    user_dir = os.path.join(TMP_DIR, str(req.session_hash))
    os.makedirs(user_dir, exist_ok=True)
    outputs = pipeline.run(
        prompt,
        seed=seed,
        formats=["gaussian", "mesh"],
        sparse_structure_sampler_params={
            "steps": ss_sampling_steps,
            "cfg_strength": ss_guidance_strength,
        },
        slat_sampler_params={
            "steps": slat_sampling_steps,
            "cfg_strength": slat_guidance_strength,
        },
    )
    video = render_utils.render_video(outputs['gaussian'][0], num_frames=120)['color']
    video_geo = render_utils.render_video(outputs['mesh'][0], num_frames=120)['normal']
    video = [np.concatenate([video[i], video_geo[i]], axis=1) for i in range(len(video))]
    video_path = os.path.join(user_dir, 'sample.mp4')
    imageio.mimsave(video_path, video, fps=15)
    state = pack_state(outputs['gaussian'][0], outputs['mesh'][0])
    torch.cuda.empty_cache()
    # Return state for JSON, video path for Video, and state again for internal buffer
    return state, video_path, state


@spaces.GPU(duration=90)
def extract_glb(
    state: dict,
    mesh_simplify: float,
    texture_size: int,
    req: gr.Request,
) -> Tuple[str, str]:
    """
    Extract a GLB file from the 3D model.
    Args:
        state (dict): The state of the generated 3D model.
        mesh_simplify (float): The mesh simplification factor.
        texture_size (int): The texture resolution.
    Returns:
        str: The path to the extracted GLB file.
    """
    user_dir = os.path.join(TMP_DIR, str(req.session_hash))
    os.makedirs(user_dir, exist_ok=True)
    gs, mesh = unpack_state(state)
    glb = postprocessing_utils.to_glb(gs, mesh, simplify=mesh_simplify, texture_size=texture_size, verbose=False)
    glb_path = os.path.join(user_dir, 'sample.glb')
    glb.export(glb_path)
    torch.cuda.empty_cache()
    return glb_path, glb_path


@spaces.GPU
def extract_gaussian(state: dict, req: gr.Request) -> Tuple[str, str]:
    """
    Extract a Gaussian file from the 3D model.
    Args:
        state (dict): The state of the generated 3D model.
    Returns:
        str: The path to the extracted Gaussian file.
    """
    user_dir = os.path.join(TMP_DIR, str(req.session_hash))
    os.makedirs(user_dir, exist_ok=True)
    gs, _ = unpack_state(state)
    gaussian_path = os.path.join(user_dir, 'sample.ply')
    gs.save_ply(gaussian_path)
    torch.cuda.empty_cache()
    return gaussian_path, gaussian_path


output_buf = gr.State()
video_output = gr.Video(label="Generated 3D Asset", autoplay=True, loop=True, height=300)
model_output = gr.Model3D(label="Extracted GLB/Gaussian", height=300)

# Add a hidden JSON output for the state object for API calls
state_output_json = gr.JSON(visible=False, label="State JSON Output")

with gr.Blocks(delete_cache=(600, 600)) as demo:
    gr.Markdown("""
    ## Text to 3D Asset with [TRELLIS](https://trellis3d.github.io/)
    * Type a text prompt and click "Generate" to create a 3D asset.
    * If you find the generated 3D asset satisfactory, click "Extract GLB" to extract the GLB file and download it.
    """)
    
    with gr.Row():
        with gr.Column():
            text_prompt = gr.Textbox(label="Text Prompt", lines=5)
            
            with gr.Accordion(label="Generation Settings", open=False):
                seed = gr.Slider(0, MAX_SEED, label="Seed", value=0, step=1)
                randomize_seed = gr.Checkbox(label="Randomize Seed", value=True)
                gr.Markdown("Stage 1: Sparse Structure Generation")
                with gr.Row():
                    ss_guidance_strength = gr.Slider(0.0, 10.0, label="Guidance Strength", value=7.5, step=0.1)
                    ss_sampling_steps = gr.Slider(1, 50, label="Sampling Steps", value=25, step=1)
                gr.Markdown("Stage 2: Structured Latent Generation")
                with gr.Row():
                    slat_guidance_strength = gr.Slider(0.0, 10.0, label="Guidance Strength", value=7.5, step=0.1)
                    slat_sampling_steps = gr.Slider(1, 50, label="Sampling Steps", value=25, step=1)

            generate_btn = gr.Button("Generate")
            
            with gr.Accordion(label="GLB Extraction Settings", open=False):
                mesh_simplify = gr.Slider(0.9, 0.98, label="Simplify", value=0.95, step=0.01)
                texture_size = gr.Slider(512, 2048, label="Texture Size", value=1024, step=512)
            
            with gr.Row():
                extract_glb_btn = gr.Button("Extract GLB", interactive=False)
                extract_gs_btn = gr.Button("Extract Gaussian", interactive=False)
            gr.Markdown("""
                        *NOTE: Gaussian file can be very large (~50MB), it will take a while to display and download.*
                        """)

        with gr.Column():
            video_output = gr.Video(label="Generated 3D Asset", autoplay=True, loop=True, height=300)
            model_output = gr.Model3D(label="Extracted GLB/Gaussian", height=300)
            
            with gr.Row():
                download_glb = gr.DownloadButton(label="Download GLB", interactive=False)
                download_gs = gr.DownloadButton(label="Download Gaussian", interactive=False)  
    
    output_buf = gr.State()

    # Handlers
    demo.load(start_session)
    demo.unload(end_session)

    generate_btn.click(
        get_seed,
        inputs=[randomize_seed, seed],
        outputs=[seed],
    ).then(
        text_to_3d,
        inputs=[text_prompt, seed, ss_guidance_strength, ss_sampling_steps, slat_guidance_strength, slat_sampling_steps],
        # Output state to hidden JSON first, then video to visible component, then state to internal buffer
        outputs=[state_output_json, video_output, output_buf],
    ).then(
        lambda: tuple([gr.Button(interactive=True), gr.Button(interactive=True)]),
        outputs=[extract_glb_btn, extract_gs_btn],
    )

    video_output.clear(
        lambda: tuple([gr.Button(interactive=False), gr.Button(interactive=False)]),
        outputs=[extract_glb_btn, extract_gs_btn],
    )

    extract_glb_btn.click(
        extract_glb,
        inputs=[output_buf, mesh_simplify, texture_size],
        outputs=[model_output, download_glb],
    ).then(
        lambda: gr.Button(interactive=True),
        outputs=[download_glb],
    )
    
    extract_gs_btn.click(
        extract_gaussian,
        inputs=[output_buf],
        outputs=[model_output, download_gs],
    ).then(
        lambda: gr.Button(interactive=True),
        outputs=[download_gs],
    )

    model_output.clear(
        lambda: gr.Button(interactive=False),
        outputs=[download_glb],
    )
    

# Launch the Gradio app
if __name__ == "__main__":
    pipeline = TrellisTextTo3DPipeline.from_pretrained("JeffreyXiang/TRELLIS-text-xlarge")
    pipeline.cuda()
    demo.launch()

# --- API-only endpoint for server integration ---
# This exposes text_to_3d with gr.JSON() as the first output, so the state object is included in the API response.
# Not wired to the UI; use for API calls only.
api_text_to_3d = gr.Interface(
    fn=lambda prompt, seed, ss_guidance_strength, ss_sampling_steps, slat_guidance_strength, slat_sampling_steps: text_to_3d(
        prompt, seed, ss_guidance_strength, ss_sampling_steps, slat_guidance_strength, slat_sampling_steps, gr.Request()
    ),
    inputs=[
        gr.Textbox(label="Text Prompt"),
        gr.Number(label="Seed"),
        gr.Number(label="SS Guidance Strength"),
        gr.Number(label="SS Sampling Steps"),
        gr.Number(label="SLAT Guidance Strength"),
        gr.Number(label="SLAT Sampling Steps"),
    ],
    # Note: This API is technically available but not used by the server.
    # The server uses the main UI endpoint modified to return JSON first.
    outputs=[gr.JSON(label="State Object"), gr.Textbox(label="Video Path")],
    allow_flagging="never",
    description="API endpoint for text_to_3d that returns the state object as JSON. Not for UI use.",
)

# --- API-only endpoint for GLB extraction --- 
# Explicitly defines state input as JSON for server calls.
api_extract_glb = gr.Interface(
    fn=lambda state, mesh_simplify, texture_size: extract_glb(
        state, mesh_simplify, texture_size, gr.Request()
    ),
    inputs=[
        gr.JSON(label="State Object"), # Expect state as JSON
        gr.Slider(0.9, 0.98, label="Simplify", value=0.95, step=0.01),
        gr.Slider(512, 2048, label="Texture Size", value=1024, step=512)
    ],
    # Corresponds to the tuple returned by extract_glb: (glb_path, glb_path)
    outputs=[
        gr.Model3D(label="Extracted GLB Path Output"), # Maps to first glb_path
        gr.File(label="Downloadable GLB File") # Maps to second glb_path 
    ],
    allow_flagging="never",
    description="API endpoint for extract_glb that accepts state as JSON. Not for UI use.",
)