Spaces:
Running
on
Zero
Running
on
Zero
revert back to without fast api
Browse files
app.py
CHANGED
@@ -17,22 +17,11 @@ from trellis.utils import render_utils, postprocessing_utils
|
|
17 |
import traceback
|
18 |
import sys
|
19 |
|
20 |
-
# --- Import the FastAPI integration module ---
|
21 |
-
import trellis_fastAPI_integration
|
22 |
-
import logging
|
23 |
|
24 |
MAX_SEED = np.iinfo(np.int32).max
|
25 |
TMP_DIR = os.path.join(os.path.dirname(os.path.abspath(__file__)), 'tmp')
|
26 |
os.makedirs(TMP_DIR, exist_ok=True)
|
27 |
|
28 |
-
# --- Global Pipeline Variable ---
|
29 |
-
pipeline = None
|
30 |
-
|
31 |
-
# --- Logging Setup ---
|
32 |
-
logging.basicConfig(level=logging.INFO)
|
33 |
-
logger = logging.getLogger(__name__)
|
34 |
-
|
35 |
-
logger.info("Trellis App: Script starting.")
|
36 |
|
37 |
def start_session(req: gr.Request):
|
38 |
user_dir = os.path.join(TMP_DIR, str(req.session_hash))
|
@@ -41,11 +30,7 @@ def start_session(req: gr.Request):
|
|
41 |
|
42 |
def end_session(req: gr.Request):
|
43 |
user_dir = os.path.join(TMP_DIR, str(req.session_hash))
|
44 |
-
|
45 |
-
if os.path.exists(user_dir):
|
46 |
-
shutil.rmtree(user_dir)
|
47 |
-
except OSError as e:
|
48 |
-
logger.warning(f"Warning: Could not remove temp session dir {user_dir}: {e}")
|
49 |
|
50 |
|
51 |
def pack_state(gs: Gaussian, mesh: MeshExtractResult) -> dict:
|
@@ -65,7 +50,7 @@ def pack_state(gs: Gaussian, mesh: MeshExtractResult) -> dict:
|
|
65 |
}
|
66 |
|
67 |
|
68 |
-
def unpack_state(state: dict) -> Tuple[Gaussian, edict]:
|
69 |
gs = Gaussian(
|
70 |
aabb=state['gaussian']['aabb'],
|
71 |
sh_degree=state['gaussian']['sh_degree'],
|
@@ -107,7 +92,6 @@ def text_to_3d(
|
|
107 |
) -> Tuple[dict, str]:
|
108 |
"""
|
109 |
Convert an text prompt to a 3D model.
|
110 |
-
|
111 |
Args:
|
112 |
prompt (str): The text prompt.
|
113 |
seed (int): The random seed.
|
@@ -115,22 +99,11 @@ def text_to_3d(
|
|
115 |
ss_sampling_steps (int): The number of sampling steps for sparse structure generation.
|
116 |
slat_guidance_strength (float): The guidance strength for structured latent generation.
|
117 |
slat_sampling_steps (int): The number of sampling steps for structured latent generation.
|
118 |
-
|
119 |
Returns:
|
120 |
dict: The information of the generated 3D model.
|
121 |
str: The path to the video of the 3D model.
|
122 |
"""
|
123 |
-
|
124 |
-
session_hash_str = str(req.session_hash) if hasattr(req, 'session_hash') and req.session_hash else f"gradio_call_{np.random.randint(10000)}"
|
125 |
-
user_dir = os.path.join(TMP_DIR, session_hash_str)
|
126 |
-
os.makedirs(user_dir, exist_ok=True) # Ensure directory exists
|
127 |
-
|
128 |
-
# Use the global pipeline initialized later
|
129 |
-
if pipeline is None:
|
130 |
-
logger.error("Gradio Error: Pipeline not initialized")
|
131 |
-
# Handle error appropriately for Gradio - maybe return None or raise gr.Error?
|
132 |
-
return {}, None
|
133 |
-
|
134 |
outputs = pipeline.run(
|
135 |
prompt,
|
136 |
seed=seed,
|
@@ -148,11 +121,7 @@ def text_to_3d(
|
|
148 |
video_geo = render_utils.render_video(outputs['mesh'][0], num_frames=120)['normal']
|
149 |
video = [np.concatenate([video[i], video_geo[i]], axis=1) for i in range(len(video))]
|
150 |
video_path = os.path.join(user_dir, 'sample.mp4')
|
151 |
-
|
152 |
-
imageio.mimsave(video_path, video, fps=15) # Now the directory should exist
|
153 |
-
except FileNotFoundError:
|
154 |
-
logger.error(f"ERROR: Directory {user_dir} still not found before mimsave!", exc_info=True)
|
155 |
-
raise
|
156 |
state = pack_state(outputs['gaussian'][0], outputs['mesh'][0])
|
157 |
torch.cuda.empty_cache()
|
158 |
return state, video_path
|
@@ -167,28 +136,18 @@ def extract_glb(
|
|
167 |
) -> Tuple[str, str]:
|
168 |
"""
|
169 |
Extract a GLB file from the 3D model.
|
170 |
-
|
171 |
Args:
|
172 |
state (dict): The state of the generated 3D model.
|
173 |
mesh_simplify (float): The mesh simplification factor.
|
174 |
texture_size (int): The texture resolution.
|
175 |
-
|
176 |
Returns:
|
177 |
str: The path to the extracted GLB file.
|
178 |
"""
|
179 |
-
|
180 |
-
session_hash_str = str(req.session_hash) if hasattr(req, 'session_hash') and req.session_hash else f"gradio_call_{np.random.randint(10000)}"
|
181 |
-
user_dir = os.path.join(TMP_DIR, session_hash_str)
|
182 |
-
os.makedirs(user_dir, exist_ok=True) # Ensure directory exists
|
183 |
-
|
184 |
gs, mesh = unpack_state(state)
|
185 |
glb = postprocessing_utils.to_glb(gs, mesh, simplify=mesh_simplify, texture_size=texture_size, verbose=False)
|
186 |
glb_path = os.path.join(user_dir, 'sample.glb')
|
187 |
-
|
188 |
-
glb.export(glb_path) # Now the directory should exist
|
189 |
-
except FileNotFoundError:
|
190 |
-
logger.error(f"ERROR: Directory {user_dir} still not found before glb.export!", exc_info=True)
|
191 |
-
raise
|
192 |
torch.cuda.empty_cache()
|
193 |
return glb_path, glb_path
|
194 |
|
@@ -197,30 +156,19 @@ def extract_glb(
|
|
197 |
def extract_gaussian(state: dict, req: gr.Request) -> Tuple[str, str]:
|
198 |
"""
|
199 |
Extract a Gaussian file from the 3D model.
|
200 |
-
|
201 |
Args:
|
202 |
state (dict): The state of the generated 3D model.
|
203 |
-
|
204 |
Returns:
|
205 |
str: The path to the extracted Gaussian file.
|
206 |
"""
|
207 |
-
|
208 |
-
session_hash_str = str(req.session_hash) if hasattr(req, 'session_hash') and req.session_hash else f"gradio_call_{np.random.randint(10000)}"
|
209 |
-
user_dir = os.path.join(TMP_DIR, session_hash_str)
|
210 |
-
os.makedirs(user_dir, exist_ok=True) # Ensure directory exists
|
211 |
-
|
212 |
gs, _ = unpack_state(state)
|
213 |
gaussian_path = os.path.join(user_dir, 'sample.ply')
|
214 |
-
|
215 |
-
gs.save_ply(gaussian_path) # Now the directory should exist
|
216 |
-
except FileNotFoundError:
|
217 |
-
logger.error(f"ERROR: Directory {user_dir} still not found before gs.save_ply!", exc_info=True)
|
218 |
-
raise
|
219 |
torch.cuda.empty_cache()
|
220 |
return gaussian_path, gaussian_path
|
221 |
|
222 |
|
223 |
-
# --- Gradio Blocks Definition ---
|
224 |
with gr.Blocks(delete_cache=(600, 600)) as demo:
|
225 |
gr.Markdown("""
|
226 |
## Text to 3D Asset with [TRELLIS](https://trellis3d.github.io/)
|
@@ -313,41 +261,8 @@ with gr.Blocks(delete_cache=(600, 600)) as demo:
|
|
313 |
)
|
314 |
|
315 |
|
316 |
-
# Launch the Gradio app
|
317 |
if __name__ == "__main__":
|
318 |
-
|
319 |
-
|
320 |
-
|
321 |
-
pipeline = TrellisTextTo3DPipeline.from_pretrained("JeffreyXiang/TRELLIS-text-xlarge")
|
322 |
-
pipeline.cuda()
|
323 |
-
logger.info("Trellis App: Trellis Pipeline Initialized successfully.")
|
324 |
-
except Exception as e:
|
325 |
-
logger.error(f"Trellis App: FATAL ERROR initializing pipeline: {e}", exc_info=True)
|
326 |
-
pipeline = None # Ensure pipeline is None if initialization failed
|
327 |
-
# Optionally exit if pipeline is critical
|
328 |
-
# import sys
|
329 |
-
# sys.exit("Pipeline initialization failed.")
|
330 |
-
|
331 |
-
# Start the background API server using the integration module only if pipeline loaded
|
332 |
-
if pipeline:
|
333 |
-
logger.info("Trellis App: Attempting to start FastAPI server thread...")
|
334 |
-
try:
|
335 |
-
api_thread = trellis_fastAPI_integration.start_api_thread(pipeline)
|
336 |
-
if api_thread and api_thread.is_alive():
|
337 |
-
logger.info("Trellis App: FastAPI server thread started successfully (is_alive check passed).")
|
338 |
-
elif api_thread:
|
339 |
-
logger.warning("Trellis App: FastAPI server thread was created but is not alive shortly after starting.")
|
340 |
-
else:
|
341 |
-
logger.error("Trellis App: start_api_thread returned None, thread not created.")
|
342 |
-
except Exception as e:
|
343 |
-
logger.error(f"Trellis App: Error occurred during start_api_thread call: {e}", exc_info=True)
|
344 |
-
else:
|
345 |
-
logger.error("Trellis App: Skipping FastAPI server start because pipeline failed to initialize.")
|
346 |
-
|
347 |
-
# Launch the Gradio interface (blocking call)
|
348 |
-
logger.info("Trellis App: Launching Gradio Demo...")
|
349 |
-
try:
|
350 |
-
demo.launch()
|
351 |
-
logger.info("Trellis App: Gradio Demo launched.") # This might not be reached if launch blocks indefinitely
|
352 |
-
except Exception as e:
|
353 |
-
logger.error(f"Trellis App: Error launching Gradio demo: {e}", exc_info=True)
|
|
|
17 |
import traceback
|
18 |
import sys
|
19 |
|
|
|
|
|
|
|
20 |
|
21 |
MAX_SEED = np.iinfo(np.int32).max
|
22 |
TMP_DIR = os.path.join(os.path.dirname(os.path.abspath(__file__)), 'tmp')
|
23 |
os.makedirs(TMP_DIR, exist_ok=True)
|
24 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
25 |
|
26 |
def start_session(req: gr.Request):
|
27 |
user_dir = os.path.join(TMP_DIR, str(req.session_hash))
|
|
|
30 |
|
31 |
def end_session(req: gr.Request):
|
32 |
user_dir = os.path.join(TMP_DIR, str(req.session_hash))
|
33 |
+
shutil.rmtree(user_dir)
|
|
|
|
|
|
|
|
|
34 |
|
35 |
|
36 |
def pack_state(gs: Gaussian, mesh: MeshExtractResult) -> dict:
|
|
|
50 |
}
|
51 |
|
52 |
|
53 |
+
def unpack_state(state: dict) -> Tuple[Gaussian, edict, str]:
|
54 |
gs = Gaussian(
|
55 |
aabb=state['gaussian']['aabb'],
|
56 |
sh_degree=state['gaussian']['sh_degree'],
|
|
|
92 |
) -> Tuple[dict, str]:
|
93 |
"""
|
94 |
Convert an text prompt to a 3D model.
|
|
|
95 |
Args:
|
96 |
prompt (str): The text prompt.
|
97 |
seed (int): The random seed.
|
|
|
99 |
ss_sampling_steps (int): The number of sampling steps for sparse structure generation.
|
100 |
slat_guidance_strength (float): The guidance strength for structured latent generation.
|
101 |
slat_sampling_steps (int): The number of sampling steps for structured latent generation.
|
|
|
102 |
Returns:
|
103 |
dict: The information of the generated 3D model.
|
104 |
str: The path to the video of the 3D model.
|
105 |
"""
|
106 |
+
user_dir = os.path.join(TMP_DIR, str(req.session_hash))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
107 |
outputs = pipeline.run(
|
108 |
prompt,
|
109 |
seed=seed,
|
|
|
121 |
video_geo = render_utils.render_video(outputs['mesh'][0], num_frames=120)['normal']
|
122 |
video = [np.concatenate([video[i], video_geo[i]], axis=1) for i in range(len(video))]
|
123 |
video_path = os.path.join(user_dir, 'sample.mp4')
|
124 |
+
imageio.mimsave(video_path, video, fps=15)
|
|
|
|
|
|
|
|
|
125 |
state = pack_state(outputs['gaussian'][0], outputs['mesh'][0])
|
126 |
torch.cuda.empty_cache()
|
127 |
return state, video_path
|
|
|
136 |
) -> Tuple[str, str]:
|
137 |
"""
|
138 |
Extract a GLB file from the 3D model.
|
|
|
139 |
Args:
|
140 |
state (dict): The state of the generated 3D model.
|
141 |
mesh_simplify (float): The mesh simplification factor.
|
142 |
texture_size (int): The texture resolution.
|
|
|
143 |
Returns:
|
144 |
str: The path to the extracted GLB file.
|
145 |
"""
|
146 |
+
user_dir = os.path.join(TMP_DIR, str(req.session_hash))
|
|
|
|
|
|
|
|
|
147 |
gs, mesh = unpack_state(state)
|
148 |
glb = postprocessing_utils.to_glb(gs, mesh, simplify=mesh_simplify, texture_size=texture_size, verbose=False)
|
149 |
glb_path = os.path.join(user_dir, 'sample.glb')
|
150 |
+
glb.export(glb_path)
|
|
|
|
|
|
|
|
|
151 |
torch.cuda.empty_cache()
|
152 |
return glb_path, glb_path
|
153 |
|
|
|
156 |
def extract_gaussian(state: dict, req: gr.Request) -> Tuple[str, str]:
|
157 |
"""
|
158 |
Extract a Gaussian file from the 3D model.
|
|
|
159 |
Args:
|
160 |
state (dict): The state of the generated 3D model.
|
|
|
161 |
Returns:
|
162 |
str: The path to the extracted Gaussian file.
|
163 |
"""
|
164 |
+
user_dir = os.path.join(TMP_DIR, str(req.session_hash))
|
|
|
|
|
|
|
|
|
165 |
gs, _ = unpack_state(state)
|
166 |
gaussian_path = os.path.join(user_dir, 'sample.ply')
|
167 |
+
gs.save_ply(gaussian_path)
|
|
|
|
|
|
|
|
|
168 |
torch.cuda.empty_cache()
|
169 |
return gaussian_path, gaussian_path
|
170 |
|
171 |
|
|
|
172 |
with gr.Blocks(delete_cache=(600, 600)) as demo:
|
173 |
gr.Markdown("""
|
174 |
## Text to 3D Asset with [TRELLIS](https://trellis3d.github.io/)
|
|
|
261 |
)
|
262 |
|
263 |
|
264 |
+
# Launch the Gradio app
|
265 |
if __name__ == "__main__":
|
266 |
+
pipeline = TrellisTextTo3DPipeline.from_pretrained("JeffreyXiang/TRELLIS-text-xlarge")
|
267 |
+
pipeline.cuda()
|
268 |
+
demo.launch()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|