Spaces:
Running
Running
import gradio as gr | |
import torch | |
from diffusers import StableDiffusionPipeline | |
from peft import PeftModel, LoraConfig | |
import os | |
def get_lora_sd_pipeline( | |
ckpt_dir='./lora_logos', | |
base_model_name_or_path=None, | |
dtype=torch.float16, | |
adapter_name="default" | |
): | |
unet_sub_dir = os.path.join(ckpt_dir, "unet") | |
text_encoder_sub_dir = os.path.join(ckpt_dir, "text_encoder") | |
if os.path.exists(text_encoder_sub_dir) and base_model_name_or_path is None: | |
config = LoraConfig.from_pretrained(text_encoder_sub_dir) | |
base_model_name_or_path = config.base_model_name_or_path | |
if base_model_name_or_path is None: | |
raise ValueError("Please specify the base model name or path") | |
pipe = StableDiffusionPipeline.from_pretrained(base_model_name_or_path, torch_dtype=dtype) | |
pipe.unet = PeftModel.from_pretrained(pipe.unet, unet_sub_dir, adapter_name=adapter_name) | |
if os.path.exists(text_encoder_sub_dir): | |
pipe.text_encoder = PeftModel.from_pretrained(pipe.text_encoder, text_encoder_sub_dir, adapter_name=adapter_name) | |
if dtype in (torch.float16, torch.bfloat16): | |
pipe.unet.half() | |
pipe.text_encoder.half() | |
return pipe | |
def process_prompt(prompt, tokenizer, text_encoder, max_length=77): | |
tokens = tokenizer(prompt, truncation=False, return_tensors="pt")["input_ids"] | |
chunks = [tokens[:, i:i + max_length] for i in range(0, tokens.shape[1], max_length)] | |
with torch.no_grad(): | |
embeds = [text_encoder(chunk.to(text_encoder.device))[0] for chunk in chunks] | |
return torch.cat(embeds, dim=1) | |
def align_embeddings(prompt_embeds, negative_prompt_embeds): | |
max_length = max(prompt_embeds.shape[1], negative_prompt_embeds.shape[1]) | |
return torch.nn.functional.pad(prompt_embeds, (0, 0, 0, max_length - prompt_embeds.shape[1])), \ | |
torch.nn.functional.pad(negative_prompt_embeds, (0, 0, 0, max_length - negative_prompt_embeds.shape[1])) | |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu") | |
model_id_default = "CompVis/stable-diffusion-v1-4" | |
torch_dtype = torch.float16 if torch.cuda.is_available() else torch.float32 | |
pipe_default = get_lora_sd_pipeline(ckpt_dir='./lora_logos', base_model_name_or_path=model_id_default, dtype=torch_dtype).to(device) | |
def infer( | |
prompt, | |
negative_prompt, | |
width=512, | |
height=512, | |
num_inference_steps=20, | |
model_id='CompVis/stable-diffusion-v1-4', | |
seed=42, | |
guidance_scale=7.0, | |
lora_scale=0.5 | |
): | |
generator = torch.Generator(device).manual_seed(seed) | |
print(prompt) | |
print(type(prompt)) | |
print(negative_prompt) | |
print(type(negative_prompt)) | |
if model_id != model_id_default: | |
pipe = StableDiffusionPipeline.from_pretrained(model_id, torch_dtype=torch_dtype).to(device) | |
prompt_embeds = process_prompt(prompt, pipe.tokenizer, pipe.text_encoder) | |
negative_prompt_embeds = process_prompt(negative_prompt, pipe.tokenizer, pipe.text_encoder) | |
prompt_embeds, negative_prompt_embeds = align_embeddings(prompt_embeds, negative_prompt_embeds) | |
else: | |
pipe = pipe_default | |
prompt_embeds = process_prompt(prompt, pipe.tokenizer, pipe.text_encoder) | |
negative_prompt_embeds = process_prompt(negative_prompt, pipe.tokenizer, pipe.text_encoder) | |
prompt_embeds, negative_prompt_embeds = align_embeddings(prompt_embeds, negative_prompt_embeds) | |
pipe.fuse_lora(lora_scale=lora_scale) | |
params = { | |
'prompt_embeds': prompt_embeds, | |
'negative_prompt_embeds': negative_prompt_embeds, | |
'guidance_scale': guidance_scale, | |
'num_inference_steps': num_inference_steps, | |
'width': width, | |
'height': height, | |
'generator': generator, | |
} | |
return pipe(**params).images[0] | |
with gr.Blocks() as demo: | |
with gr.Column(): | |
gr.Markdown("# DEMO Text-to-Image") | |
model_id = gr.Textbox(label="Model ID", value=model_id_default) | |
prompt = gr.Textbox(label="Prompt") | |
negative_prompt = gr.Textbox(label="Negative prompt") | |
seed = gr.Number(label="Seed", value=42) | |
guidance_scale = gr.Slider(label="Guidance scale", minimum=0.0, maximum=10.0, value=7.0) | |
lora_scale = gr.Slider(label="LoRA scale", minimum=0.0, maximum=1.0, value=0.5) | |
num_inference_steps = gr.Slider(label="Number of inference steps", minimum=1, maximum=50, value=20) | |
with gr.Accordion("Optional Settings", open=False): | |
width = gr.Slider(label="Width", minimum=256, maximum=1024, value=512, step=32) | |
height = gr.Slider(label="Height", minimum=256, maximum=1024, value=512, step=32) | |
run_button = gr.Button("Run") | |
result = gr.Image(label="Result") | |
run_button.click( | |
fn=infer, | |
inputs=[ | |
prompt, | |
negative_prompt, | |
width, | |
height, | |
num_inference_steps, | |
model_id, seed, | |
guidance_scale, | |
lora_scale | |
], | |
outputs=result) | |
if __name__ == "__main__": | |
demo.launch() | |