File size: 5,149 Bytes
863f08e
 
8a52ce7
 
 
1f7518e
 
 
 
 
 
8a52ce7
1f7518e
 
8a52ce7
1f7518e
 
 
8a52ce7
1f7518e
 
8a52ce7
077767b
1f7518e
8a52ce7
1f7518e
8a52ce7
 
1f7518e
 
 
8a52ce7
1f7518e
 
8a52ce7
 
 
 
 
 
 
 
c9f36bf
8a52ce7
c9f36bf
8a52ce7
 
c9f36bf
8a52ce7
e61c05b
8a52ce7
863f08e
8a52ce7
863f08e
 
8a52ce7
 
 
 
 
 
 
 
 
 
 
 
 
 
863f08e
8a52ce7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e61c05b
8a52ce7
 
e61c05b
 
 
 
 
 
8a52ce7
 
 
 
 
 
 
 
 
 
 
 
 
863413c
 
8a52ce7
 
 
 
 
863413c
8a52ce7
 
863f08e
8a52ce7
 
 
 
 
 
 
 
 
 
863f08e
 
8a52ce7
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
import gradio as gr
import torch
from diffusers import StableDiffusionPipeline
from peft import PeftModel, LoraConfig
import os

def get_lora_sd_pipeline(
    ckpt_dir='./lora_logos', 
    base_model_name_or_path=None, 
    dtype=torch.float16, 
    adapter_name="default"
    ):
    unet_sub_dir = os.path.join(ckpt_dir, "unet")
    text_encoder_sub_dir = os.path.join(ckpt_dir, "text_encoder")
    
    if os.path.exists(text_encoder_sub_dir) and base_model_name_or_path is None:
        config = LoraConfig.from_pretrained(text_encoder_sub_dir)
        base_model_name_or_path = config.base_model_name_or_path
    
    if base_model_name_or_path is None:
        raise ValueError("Please specify the base model name or path")
    
    pipe = StableDiffusionPipeline.from_pretrained(base_model_name_or_path, torch_dtype=dtype)
    pipe.unet = PeftModel.from_pretrained(pipe.unet, unet_sub_dir, adapter_name=adapter_name)
    
    if os.path.exists(text_encoder_sub_dir):
        pipe.text_encoder = PeftModel.from_pretrained(pipe.text_encoder, text_encoder_sub_dir, adapter_name=adapter_name)
    
    if dtype in (torch.float16, torch.bfloat16):
        pipe.unet.half()
        pipe.text_encoder.half()
    
    return pipe

def process_prompt(prompt, tokenizer, text_encoder, max_length=77):
    tokens = tokenizer(prompt, truncation=False, return_tensors="pt")["input_ids"]
    chunks = [tokens[:, i:i + max_length] for i in range(0, tokens.shape[1], max_length)]
    
    with torch.no_grad():
        embeds = [text_encoder(chunk.to(text_encoder.device))[0] for chunk in chunks]
    
    return torch.cat(embeds, dim=1)

def align_embeddings(prompt_embeds, negative_prompt_embeds):
    max_length = max(prompt_embeds.shape[1], negative_prompt_embeds.shape[1])
    return torch.nn.functional.pad(prompt_embeds, (0, 0, 0, max_length - prompt_embeds.shape[1])), \
           torch.nn.functional.pad(negative_prompt_embeds, (0, 0, 0, max_length - negative_prompt_embeds.shape[1]))

device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model_id_default = "CompVis/stable-diffusion-v1-4"
torch_dtype = torch.float16 if torch.cuda.is_available() else torch.float32

pipe_default = get_lora_sd_pipeline(ckpt_dir='./lora_logos', base_model_name_or_path=model_id_default, dtype=torch_dtype).to(device)

def infer(
    prompt, 
    negative_prompt, 
    width=512, 
    height=512, 
    num_inference_steps=20, 
    model_id='CompVis/stable-diffusion-v1-4', 
    seed=42, 
    guidance_scale=7.0, 
    lora_scale=0.5
    ):
    generator = torch.Generator(device).manual_seed(seed)

    print(prompt)
    print(type(prompt))

    print(negative_prompt)
    print(type(negative_prompt))
    
    if model_id != model_id_default:
        pipe = StableDiffusionPipeline.from_pretrained(model_id, torch_dtype=torch_dtype).to(device)
        prompt_embeds = process_prompt(prompt, pipe.tokenizer, pipe.text_encoder)
        negative_prompt_embeds = process_prompt(negative_prompt, pipe.tokenizer, pipe.text_encoder)
        prompt_embeds, negative_prompt_embeds = align_embeddings(prompt_embeds, negative_prompt_embeds)
    else:
        pipe = pipe_default
        prompt_embeds = process_prompt(prompt, pipe.tokenizer, pipe.text_encoder)
        negative_prompt_embeds = process_prompt(negative_prompt, pipe.tokenizer, pipe.text_encoder)
        prompt_embeds, negative_prompt_embeds = align_embeddings(prompt_embeds, negative_prompt_embeds)
        pipe.fuse_lora(lora_scale=lora_scale)
    
    params = {
        'prompt_embeds': prompt_embeds,
        'negative_prompt_embeds': negative_prompt_embeds,
        'guidance_scale': guidance_scale,
        'num_inference_steps': num_inference_steps,
        'width': width,
        'height': height,
        'generator': generator,
    }
    
    return pipe(**params).images[0]

with gr.Blocks() as demo:
    with gr.Column():
        gr.Markdown("# DEMO Text-to-Image")
        model_id = gr.Textbox(label="Model ID", value=model_id_default)
        prompt = gr.Textbox(label="Prompt")
        negative_prompt = gr.Textbox(label="Negative prompt")
        seed = gr.Number(label="Seed", value=42)
        guidance_scale = gr.Slider(label="Guidance scale", minimum=0.0, maximum=10.0, value=7.0)
        lora_scale = gr.Slider(label="LoRA scale", minimum=0.0, maximum=1.0, value=0.5)
        num_inference_steps = gr.Slider(label="Number of inference steps", minimum=1, maximum=50, value=20)
        
        with gr.Accordion("Optional Settings", open=False):
            width = gr.Slider(label="Width", minimum=256, maximum=1024, value=512, step=32)
            height = gr.Slider(label="Height", minimum=256, maximum=1024, value=512, step=32)
        
        run_button = gr.Button("Run")
        result = gr.Image(label="Result")
    
    run_button.click(
        fn=infer, 
        inputs=[
            prompt, 
            negative_prompt, 
            width, 
            height, 
            num_inference_steps, 
            model_id, seed, 
            guidance_scale, 
            lora_scale
        ], 
        outputs=result)

if __name__ == "__main__":
    demo.launch()