File size: 11,323 Bytes
02e476c 2997c9b 02e476c 2997c9b 02e476c 2997c9b 02e476c 2997c9b 41a2f73 2997c9b 41a2f73 2997c9b 41a2f73 2997c9b 41a2f73 2997c9b 41a2f73 2997c9b 41a2f73 2997c9b 41a2f73 2997c9b 41a2f73 2997c9b 41a2f73 2997c9b 41a2f73 2997c9b 41a2f73 2997c9b 41a2f73 2997c9b 41a2f73 2997c9b 41a2f73 2997c9b 41a2f73 2997c9b 41a2f73 2997c9b 41a2f73 2997c9b 41a2f73 2997c9b 41a2f73 2997c9b 41a2f73 2997c9b 41a2f73 2997c9b 41a2f73 2997c9b 41a2f73 2997c9b 41a2f73 2997c9b 41a2f73 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 |
import gradio as gr
import pandas as pd
import numpy as np
import plotly.express as px
# Initialize pricing data
aws_instances = {
"g4dn.xlarge": {"vcpus": 4, "memory": 16, "gpu": "1x NVIDIA T4", "hourly_rate": 0.526, "gpu_memory": "16GB"},
"g4dn.2xlarge": {"vcpus": 8, "memory": 32, "gpu": "1x NVIDIA T4", "hourly_rate": 0.752, "gpu_memory": "16GB"},
"g5.xlarge": {"vcpus": 4, "memory": 16, "gpu": "1x NVIDIA A10G", "hourly_rate": 0.65, "gpu_memory": "24GB"},
"g5.2xlarge": {"vcpus": 8, "memory": 32, "gpu": "1x NVIDIA A10G", "hourly_rate": 1.006, "gpu_memory": "24GB"},
"p3.2xlarge": {"vcpus": 8, "memory": 61, "gpu": "1x NVIDIA V100", "hourly_rate": 3.06, "gpu_memory": "16GB"},
"p4d.24xlarge": {"vcpus": 96, "memory": 1152, "gpu": "8x NVIDIA A100", "hourly_rate": 32.77, "gpu_memory": "8x40GB"}
}
gcp_instances = {
"a2-highgpu-1g": {"vcpus": 12, "memory": 85, "gpu": "1x NVIDIA A100", "hourly_rate": 1.46, "gpu_memory": "40GB"},
"a2-highgpu-2g": {"vcpus": 24, "memory": 170, "gpu": "2x NVIDIA A100", "hourly_rate": 2.93, "gpu_memory": "2x40GB"},
"a2-highgpu-4g": {"vcpus": 48, "memory": 340, "gpu": "4x NVIDIA A100", "hourly_rate": 5.86, "gpu_memory": "4x40GB"},
"n1-standard-4-t4": {"vcpus": 4, "memory": 15, "gpu": "1x NVIDIA T4", "hourly_rate": 0.49, "gpu_memory": "16GB"},
"n1-standard-8-t4": {"vcpus": 8, "memory": 30, "gpu": "1x NVIDIA T4", "hourly_rate": 0.69, "gpu_memory": "16GB"},
"g2-standard-4": {"vcpus": 4, "memory": 16, "gpu": "1x NVIDIA L4", "hourly_rate": 0.59, "gpu_memory": "24GB"}
}
api_pricing = {
"OpenAI": {
"GPT-3.5-Turbo": {"input_per_1M": 0.5, "output_per_1M": 1.5, "token_context": 16385},
"GPT-4o": {"input_per_1M": 5.0, "output_per_1M": 15.0, "token_context": 32768},
"GPT-4o-mini": {"input_per_1M": 2.5, "output_per_1M": 7.5, "token_context": 32768},
},
"TogetherAI": {
"Llama-3-8B": {"input_per_1M": 0.15, "output_per_1M": 0.15, "token_context": 8192},
"Llama-3-70B": {"input_per_1M": 0.9, "output_per_1M": 0.9, "token_context": 8192},
"Llama-2-13B": {"input_per_1M": 0.6, "output_per_1M": 0.6, "token_context": 4096},
"Llama-2-70B": {"input_per_1M": 2.5, "output_per_1M": 2.5, "token_context": 4096},
"DeepSeek-Coder-33B": {"input_per_1M": 2.0, "output_per_1M": 2.0, "token_context": 16384},
},
"Anthropic": {
"Claude-3-Opus": {"input_per_1M": 15.0, "output_per_1M": 75.0, "token_context": 200000},
"Claude-3-Sonnet": {"input_per_1M": 3.0, "output_per_1M": 15.0, "token_context": 200000},
"Claude-3-Haiku": {"input_per_1M": 0.25, "output_per_1M": 1.25, "token_context": 200000},
}
}
model_sizes = {
"Small (7B parameters)": {"memory_required": 14, "throughput_factor": 1.0},
"Medium (13B parameters)": {"memory_required": 26, "throughput_factor": 0.7},
"Large (70B parameters)": {"memory_required": 140, "throughput_factor": 0.3},
"XL (180B parameters)": {"memory_required": 360, "throughput_factor": 0.15},
}
def calculate_aws_cost(instance, hours, storage, reserved=False, spot=False, years=1):
data = aws_instances[instance]
rate = data['hourly_rate']
if spot:
rate *= 0.3
elif reserved:
factors = {1: 0.6, 3: 0.4}
rate *= factors.get(years, 0.6)
compute = rate * hours
storage_cost = storage * 0.10
return {'compute_cost': compute, 'storage_cost': storage_cost, 'total_cost': compute + storage_cost}
def calculate_gcp_cost(instance, hours, storage, reserved=False, spot=False, years=1):
data = gcp_instances[instance]
rate = data['hourly_rate']
if spot:
rate *= 0.2
elif reserved:
factors = {1: 0.7, 3: 0.5}
rate *= factors.get(years, 0.7)
compute = rate * hours
storage_cost = storage * 0.04
return {'compute_cost': compute, 'storage_cost': storage_cost, 'total_cost': compute + storage_cost}
def calculate_api_cost(provider, model, input_tokens, output_tokens, api_calls):
mdata = api_pricing[provider][model]
input_cost = (input_tokens * mdata['input_per_1M']) / 1
output_cost = (output_tokens * mdata['output_per_1M']) / 1
call_cost = api_calls * 0.0001 if provider == 'TogetherAI' else 0
total = input_cost + output_cost + call_cost
return {'input_cost': input_cost, 'output_cost': output_cost, 'api_call_cost': call_cost, 'total_cost': total}
def filter_compatible_instances(instances, min_mem):
result = {}
for name, data in instances.items():
mem_str = data['gpu_memory']
if 'x' in mem_str and not mem_str.startswith(('1x','2x','4x','8x')):
val = int(mem_str.replace('GB',''))
elif 'x' in mem_str:
parts = mem_str.split('x')
val = int(parts[0]) * int(parts[1].replace('GB',''))
else:
val = int(mem_str.replace('GB',''))
if val >= min_mem:
result[name] = data
return result
def generate_cost_comparison(
compute_hours, tokens_per_month, input_ratio, api_calls,
model_size, storage_gb, reserved_instances, spot_instances, multi_year_commitment
):
years = int(multi_year_commitment)
in_tokens = tokens_per_month * (input_ratio/100)
out_tokens = tokens_per_month - in_tokens
min_mem = model_sizes[model_size]['memory_required']
aws_comp = filter_compatible_instances(aws_instances, min_mem)
gcp_comp = filter_compatible_instances(gcp_instances, min_mem)
results = []
# AWS table
aws_html = '<h3>AWS Compatible Instances</h3>'
if aws_comp:
aws_html += '<table width="100%"><tr><th>Instance</th><th>Monthly Cost</th></tr>'
best_aws, best_cost = None, float('inf')
for inst in aws_comp:
c = calculate_aws_cost(inst, compute_hours, storage_gb, reserved_instances, spot_instances, years)['total_cost']
aws_html += f'<tr><td>{inst}</td><td>${c:.2f}</td></tr>'
if c < best_cost:
best_aws, best_cost = inst, c
aws_html += '</table>'
if best_aws:
results.append({'provider': f'AWS ({best_aws})', 'cost': best_cost, 'type':'Cloud'})
else:
aws_html += '<p>No compatible AWS instances.</p>'
# GCP table
gcp_html = '<h3>GCP Compatible Instances</h3>'
if gcp_comp:
gcp_html += '<table width="100%"><tr><th>Instance</th><th>Monthly Cost</th></tr>'
best_gcp, best_gcp_cost = None, float('inf')
for inst in gcp_comp:
c = calculate_gcp_cost(inst, compute_hours, storage_gb, reserved_instances, spot_instances, years)['total_cost']
gcp_html += f'<tr><td>{inst}</td><td>${c:.2f}</td></tr>'
if c < best_gcp_cost:
best_gcp, best_gcp_cost = inst, c
gcp_html += '</table>'
if best_gcp:
results.append({'provider': f'GCP ({best_gcp})', 'cost': best_gcp_cost, 'type':'Cloud'})
else:
gcp_html += '<p>No compatible GCP instances.</p>'
# API table
api_html = '<h3>API Options</h3>'
api_html += '<table width="100%"><tr><th>Provider</th><th>Model</th><th>Total Cost</th></tr>'
api_costs = {}
for prov in api_pricing:
for mdl in api_pricing[prov]:
cost_data = calculate_api_cost(prov, mdl, in_tokens, out_tokens, api_calls)
api_costs[(prov,mdl)] = cost_data['total_cost']
api_html += f'<tr><td>{prov}</td><td>{mdl}</td><td>${cost_data["total_cost"]:.2f}</td></tr>'
api_html += '</table>'
best_api = min(api_costs, key=api_costs.get)
results.append({'provider': f'{best_api[0]} ({best_api[1]})', 'cost': api_costs[best_api], 'type':'API'})
# Recommendation
cheapest = min(results, key=lambda x: x['cost'])
rec = '<h3>Recommendation</h3>'
if cheapest['type']=='API':
rec += f"<p>The API {cheapest['provider']} is cheapest at ${cheapest['cost']:.2f}.</p>"
else:
rec += f"<p>The Cloud {cheapest['provider']} is cheapest at ${cheapest['cost']:.2f}.</p>"
# Plot
df_res = pd.DataFrame(results)
fig = px.bar(df_res, x='provider', y='cost', color='type', title='Monthly Cost Comparison')
# HTML output
html = f"""
<div>{aws_html}</div>
<div>{gcp_html}</div>
<div>{api_html}</div>
<div>{rec}</div>
"""
return html, fig
def app_function(
compute_hours, tokens_per_month, input_ratio, api_calls,
model_size, storage_gb, reserved_instances, spot_instances, multi_year_commitment
):
return generate_cost_comparison(
compute_hours, tokens_per_month, input_ratio, api_calls,
model_size, storage_gb, reserved_instances, spot_instances, multi_year_commitment
)
# Gradio interface
def main():
with gr.Blocks(title="Cloud Cost Estimator", theme=gr.themes.Soft(primary_hue="indigo")) as demo:
gr.HTML("""
<div style="text-align:center; margin-bottom:20px;">
<h1>Cloud Cost Estimator</h1>
<p>Compare costs between cloud hardware and API endpoints</p>
</div>
""")
with gr.Row():
with gr.Column(scale=1):
gr.HTML("<h3>Usage Parameters</h3>")
compute_hours = gr.Slider(label="Compute Hours per Month", minimum=1, maximum=730, value=100)
tokens_per_month = gr.Slider(label="Tokens Processed per Month (millions)", minimum=1, maximum=1000, value=10)
input_ratio = gr.Slider(label="Input Token Ratio (%)", minimum=10, maximum=90, value=30)
api_calls = gr.Slider(label="API Calls per Month", minimum=100, maximum=1000000, value=10000, step=100)
model_size = gr.Dropdown(label="Model Size", choices=list(model_sizes.keys()), value="Medium (13B parameters)")
storage_gb = gr.Slider(label="Storage Required (GB)", minimum=10, maximum=1000, value=100)
gr.HTML("<h3>Advanced Options</h3>")
reserved_instances = gr.Checkbox(label="Use Reserved Instances", value=False)
spot_instances = gr.Checkbox(label="Use Spot/Preemptible Instances", value=False)
multi_year_commitment = gr.Radio(label="Commitment Period (years)", choices=["1","3"], value="1")
submit_button = gr.Button("Calculate Costs", variant="primary")
with gr.Column(scale=2):
results_html = gr.HTML(label="Results")
plot_output = gr.Plot(label="Cost Comparison")
submit_button.click(
app_function,
inputs=[compute_hours, tokens_per_month, input_ratio, api_calls, model_size, storage_gb, reserved_instances, spot_instances, multi_year_commitment],
outputs=[results_html, plot_output]
)
gr.HTML("""
<div style="margin-top:30px; border-top:1px solid #e5e7eb; padding-top:20px;">
<h3>Help & Resources</h3>
<p><a href="https://aws.amazon.com/ec2/pricing/">AWS EC2 Pricing</a> | <a href="https://cloud.google.com/compute/pricing">GCP Pricing</a></p>
<p><a href="https://openai.com/pricing">OpenAI API Pricing</a> | <a href="https://www.anthropic.com/api">Anthropic Claude API Pricing</a> | <a href="https://www.together.ai/pricing">TogetherAI Pricing</a></p>
</div>
""")
demo.launch()
if __name__ == "__main__":
main()
|