File size: 25,286 Bytes
02e476c
2997c9b
 
 
 
02e476c
2997c9b
 
 
 
 
 
 
 
 
 
02e476c
2997c9b
 
 
 
 
 
 
 
 
02e476c
2997c9b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
import gradio as gr
import pandas as pd
import numpy as np
import plotly.express as px
import plotly.graph_objects as go

# Initialize pricing data
# AWS pricing - Instance types and their properties
aws_instances = {
    "g4dn.xlarge": {"vcpus": 4, "memory": 16, "gpu": "1x NVIDIA T4", "hourly_rate": 0.526, "gpu_memory": "16GB"},
    "g4dn.2xlarge": {"vcpus": 8, "memory": 32, "gpu": "1x NVIDIA T4", "hourly_rate": 0.752, "gpu_memory": "16GB"},
    "g5.xlarge": {"vcpus": 4, "memory": 16, "gpu": "1x NVIDIA A10G", "hourly_rate": 0.65, "gpu_memory": "24GB"},
    "g5.2xlarge": {"vcpus": 8, "memory": 32, "gpu": "1x NVIDIA A10G", "hourly_rate": 1.006, "gpu_memory": "24GB"},
    "p3.2xlarge": {"vcpus": 8, "memory": 61, "gpu": "1x NVIDIA V100", "hourly_rate": 3.06, "gpu_memory": "16GB"},
    "p4d.24xlarge": {"vcpus": 96, "memory": 1152, "gpu": "8x NVIDIA A100", "hourly_rate": 32.77, "gpu_memory": "8x40GB"}
}

# GCP pricing - Instance types and their properties
gcp_instances = {
    "a2-highgpu-1g": {"vcpus": 12, "memory": 85, "gpu": "1x NVIDIA A100", "hourly_rate": 1.46, "gpu_memory": "40GB"},
    "a2-highgpu-2g": {"vcpus": 24, "memory": 170, "gpu": "2x NVIDIA A100", "hourly_rate": 2.93, "gpu_memory": "2x40GB"},
    "a2-highgpu-4g": {"vcpus": 48, "memory": 340, "gpu": "4x NVIDIA A100", "hourly_rate": 5.86, "gpu_memory": "4x40GB"},
    "n1-standard-4-t4": {"vcpus": 4, "memory": 15, "gpu": "1x NVIDIA T4", "hourly_rate": 0.49, "gpu_memory": "16GB"},
    "n1-standard-8-t4": {"vcpus": 8, "memory": 30, "gpu": "1x NVIDIA T4", "hourly_rate": 0.69, "gpu_memory": "16GB"},
    "g2-standard-4": {"vcpus": 4, "memory": 16, "gpu": "1x NVIDIA L4", "hourly_rate": 0.59, "gpu_memory": "24GB"}
}

# API pricing - Models and their prices
api_pricing = {
    "OpenAI": {
        "GPT-3.5-Turbo": {"input_per_1M": 0.5, "output_per_1M": 1.5, "token_context": 16385},
        "GPT-4o": {"input_per_1M": 5.0, "output_per_1M": 15.0, "token_context": 32768},
        "GPT-4o-mini": {"input_per_1M": 2.5, "output_per_1M": 7.5, "token_context": 32768},
    },
    "TogetherAI": {
        "Llama-3-8B": {"input_per_1M": 0.15, "output_per_1M": 0.15, "token_context": 8192},
        "Llama-3-70B": {"input_per_1M": 0.9, "output_per_1M": 0.9, "token_context": 8192},
        "Llama-2-13B": {"input_per_1M": 0.6, "output_per_1M": 0.6, "token_context": 4096},
        "Llama-2-70B": {"input_per_1M": 2.5, "output_per_1M": 2.5, "token_context": 4096},
        "DeepSeek-Coder-33B": {"input_per_1M": 2.0, "output_per_1M": 2.0, "token_context": 16384},
    },
    "Anthropic": {
        "Claude-3-Opus": {"input_per_1M": 15.0, "output_per_1M": 75.0, "token_context": 200000},
        "Claude-3-Sonnet": {"input_per_1M": 3.0, "output_per_1M": 15.0, "token_context": 200000},
        "Claude-3-Haiku": {"input_per_1M": 0.25, "output_per_1M": 1.25, "token_context": 200000},
    }
}

# Model sizes and memory requirements
model_sizes = {
    "Small (7B parameters)": {"memory_required": 14, "throughput_factor": 1.0},
    "Medium (13B parameters)": {"memory_required": 26, "throughput_factor": 0.7},
    "Large (70B parameters)": {"memory_required": 140, "throughput_factor": 0.3},
    "XL (180B parameters)": {"memory_required": 360, "throughput_factor": 0.15},
}

# Calculate costs
def calculate_aws_cost(instance, hours, storage, reserved=False, spot=False, years=1):
    instance_data = aws_instances[instance]
    base_hourly = instance_data["hourly_rate"]
    
    # Apply discounts for reservation or spot
    if spot:
        hourly_rate = base_hourly * 0.3  # 70% discount for spot
    elif reserved:
        discount_factors = {1: 0.6, 3: 0.4}  # 40% for 1 year, 60% for 3 years
        hourly_rate = base_hourly * discount_factors.get(years, 0.6)
    else:
        hourly_rate = base_hourly
    
    compute_cost = hourly_rate * hours
    storage_cost = storage * 0.10  # $0.10 per GB for EBS
    
    return {
        "compute_cost": compute_cost,
        "storage_cost": storage_cost,
        "total_cost": compute_cost + storage_cost,
        "instance_details": instance_data
    }

def calculate_gcp_cost(instance, hours, storage, reserved=False, spot=False, years=1):
    instance_data = gcp_instances[instance]
    base_hourly = instance_data["hourly_rate"]
    
    # Apply discounts
    if spot:
        hourly_rate = base_hourly * 0.2  # 80% discount for preemptible
    elif reserved:
        discount_factors = {1: 0.7, 3: 0.5}  # 30% for 1 year, 50% for 3 years
        hourly_rate = base_hourly * discount_factors.get(years, 0.7)
    else:
        hourly_rate = base_hourly
    
    compute_cost = hourly_rate * hours
    storage_cost = storage * 0.04  # $0.04 per GB for Standard SSD
    
    return {
        "compute_cost": compute_cost,
        "storage_cost": storage_cost,
        "total_cost": compute_cost + storage_cost,
        "instance_details": instance_data
    }

def calculate_api_cost(provider, model, input_tokens, output_tokens, api_calls):
    model_data = api_pricing[provider][model]
    
    input_cost = (input_tokens * model_data["input_per_1M"]) / 1
    output_cost = (output_tokens * model_data["output_per_1M"]) / 1
    
    # Add a small cost for API calls for some providers
    api_call_costs = 0
    if provider == "TogetherAI":
        api_call_costs = api_calls * 0.0001  # $0.0001 per request
    
    total_cost = input_cost + output_cost + api_call_costs
    
    return {
        "input_cost": input_cost,
        "output_cost": output_cost,
        "api_call_cost": api_call_costs,
        "total_cost": total_cost,
        "model_details": model_data
    }

# Filter instances based on model size requirements
def filter_compatible_instances(instances_dict, min_memory_required):
    compatible = {}
    for name, data in instances_dict.items():
        # Parse GPU memory
        memory_str = data["gpu_memory"]
        
        # Handle multiple GPUs
        if "x" in memory_str and not memory_str.startswith(("1x", "2x", "4x", "8x")):
            # Format: "16GB"
            memory_val = int(memory_str.split("GB")[0])
        elif "x" in memory_str:
            # Format: "8x40GB"
            parts = memory_str.split("x")
            num_gpus = int(parts[0])
            memory_per_gpu = int(parts[1].split("GB")[0])
            memory_val = num_gpus * memory_per_gpu
        else:
            # Format: "40GB"
            memory_val = int(memory_str.split("GB")[0])
        
        if memory_val >= min_memory_required:
            compatible[name] = data
            
    return compatible

def generate_cost_comparison(
    compute_hours, 
    tokens_per_month, 
    input_ratio, 
    api_calls, 
    model_size, 
    storage_gb, 
    reserved_instances, 
    spot_instances, 
    multi_year_commitment
):
    # Calculate input and output tokens
    input_tokens = tokens_per_month * (input_ratio / 100)
    output_tokens = tokens_per_month * (1 - (input_ratio / 100))
    
    # Check model memory requirements
    min_memory_required = model_sizes[model_size]["memory_required"]
    
    # Filter compatible instances
    compatible_aws = filter_compatible_instances(aws_instances, min_memory_required)
    compatible_gcp = filter_compatible_instances(gcp_instances, min_memory_required)
    
    results = []
    
    # Generate HTML for AWS options
    if compatible_aws:
        aws_results = "<h3>AWS Compatible Instances</h3>"
        aws_results += "<table width='100%'><tr><th>Instance</th><th>vCPUs</th><th>Memory</th><th>GPU</th><th>Hourly Rate</th><th>Monthly Cost</th></tr>"
        
        best_aws = None
        best_aws_cost = float('inf')
        
        for instance in compatible_aws:
            cost_result = calculate_aws_cost(instance, compute_hours, storage_gb, reserved_instances, spot_instances, multi_year_commitment)
            total_cost = cost_result["total_cost"]
            
            if total_cost < best_aws_cost:
                best_aws = instance
                best_aws_cost = total_cost
            
            aws_results += f"<tr><td>{instance}</td><td>{compatible_aws[instance]['vcpus']}</td><td>{compatible_aws[instance]['memory']}GB</td><td>{compatible_aws[instance]['gpu']}</td><td>${compatible_aws[instance]['hourly_rate']:.3f}</td><td>${total_cost:.2f}</td></tr>"
        
        aws_results += "</table>"
        
        if best_aws:
            best_aws_data = calculate_aws_cost(best_aws, compute_hours, storage_gb, reserved_instances, spot_instances, multi_year_commitment)
            results.append({
                "provider": f"AWS ({best_aws})",
                "cost": best_aws_data["total_cost"],
                "type": "Cloud"
            })
    else:
        aws_results = "<h3>AWS Compatible Instances</h3><p>No compatible AWS instances found for this model size.</p>"
        best_aws = None
        best_aws_cost = float('inf')
    
    # Generate HTML for GCP options
    if compatible_gcp:
        gcp_results = "<h3>Google Cloud Compatible Instances</h3>"
        gcp_results += "<table width='100%'><tr><th>Instance</th><th>vCPUs</th><th>Memory</th><th>GPU</th><th>Hourly Rate</th><th>Monthly Cost</th></tr>"
        
        best_gcp = None
        best_gcp_cost = float('inf')
        
        for instance in compatible_gcp:
            cost_result = calculate_gcp_cost(instance, compute_hours, storage_gb, reserved_instances, spot_instances, multi_year_commitment)
            total_cost = cost_result["total_cost"]
            
            if total_cost < best_gcp_cost:
                best_gcp = instance
                best_gcp_cost = total_cost
            
            gcp_results += f"<tr><td>{instance}</td><td>{compatible_gcp[instance]['vcpus']}</td><td>{compatible_gcp[instance]['memory']}GB</td><td>{compatible_gcp[instance]['gpu']}</td><td>${compatible_gcp[instance]['hourly_rate']:.3f}</td><td>${total_cost:.2f}</td></tr>"
        
        gcp_results += "</table>"
        
        if best_gcp:
            best_gcp_data = calculate_gcp_cost(best_gcp, compute_hours, storage_gb, reserved_instances, spot_instances, multi_year_commitment)
            results.append({
                "provider": f"GCP ({best_gcp})",
                "cost": best_gcp_data["total_cost"],
                "type": "Cloud"
            })
    else:
        gcp_results = "<h3>Google Cloud Compatible Instances</h3><p>No compatible Google Cloud instances found for this model size.</p>"
        best_gcp = None
        best_gcp_cost = float('inf')
    
    # Generate HTML for API options
    api_results = "<h3>API Options</h3>"
    api_results += "<table width='100%'><tr><th>Provider</th><th>Model</th><th>Input Cost</th><th>Output Cost</th><th>Total Cost</th><th>Context Length</th></tr>"
    
    api_costs = {}
    
    for provider in api_pricing:
        for model in api_pricing[provider]:
            cost_data = calculate_api_cost(provider, model, input_tokens, output_tokens, api_calls)
            api_costs[(provider, model)] = cost_data
            
            api_results += f"<tr><td>{provider}</td><td>{model}</td><td>${cost_data['input_cost']:.2f}</td><td>${cost_data['output_cost']:.2f}</td><td>${cost_data['total_cost']:.2f}</td><td>{api_pricing[provider][model]['token_context']:,}</td></tr>"
    
    api_results += "</table>"
    
    # Find best API option
    best_api = min(api_costs.keys(), key=lambda x: api_costs[x]["total_cost"])
    best_api_cost = api_costs[best_api]
    
    results.append({
        "provider": f"{best_api[0]} ({best_api[1]})",
        "cost": best_api_cost["total_cost"],
        "type": "API"
    })
    
    # Create recommendation HTML
    recommendation = "<h3>Recommendation</h3>"
    
    # Find the cheapest option
    cheapest = min(results, key=lambda x: x["cost"])
    
    if cheapest["type"] == "API":
        recommendation += f"<p>Based on your usage parameters, the <strong>{cheapest['provider']}</strong> API endpoint is the most cost-effective option at <strong>${cheapest['cost']:.2f}/month</strong>.</p>"
        
        # Calculate API vs cloud cost ratio
        cheapest_cloud = None
        for result in results:
            if result["type"] == "Cloud":
                if cheapest_cloud is None or result["cost"] < cheapest_cloud["cost"]:
                    cheapest_cloud = result
        
        if cheapest_cloud:
            ratio = cheapest_cloud["cost"] / cheapest["cost"]
            recommendation += f"<p>This is <strong>{ratio:.1f}x cheaper</strong> than the most affordable cloud option ({cheapest_cloud['provider']}).</p>"
    else:
        recommendation += f"<p>Based on your usage parameters, <strong>{cheapest['provider']}</strong> is the most cost-effective option at <strong>${cheapest['cost']:.2f}/month</strong>.</p>"
        
        # Find cheapest API
        cheapest_api = None
        for result in results:
            if result["type"] == "API":
                if cheapest_api is None or result["cost"] < cheapest_api["cost"]:
                    cheapest_api = result
        
        if cheapest_api:
            ratio = cheapest_api["cost"] / cheapest["cost"]
            if ratio > 1:
                recommendation += f"<p>This is <strong>{1/ratio:.1f}x cheaper</strong> than the most affordable API option ({cheapest_api['provider']}).</p>"
            else:
                recommendation += f"<p>However, the API option ({cheapest_api['provider']}) is <strong>{ratio:.1f}x cheaper</strong>.</p>"
    
    # Additional recommendation text
    if tokens_per_month > 100 and cheapest["type"] == "Cloud":
        recommendation += "<p>With your high token volume, cloud hardware becomes more cost-effective despite the higher upfront costs.</p>"
    elif compute_hours < 50 and cheapest["type"] == "API":
        recommendation += "<p>With your low usage hours, API endpoints are more cost-effective as you only pay for what you use.</p>"
    
    # Create breakeven analysis HTML
    breakeven = "<h3>Breakeven Analysis</h3>"
    
    if best_aws is not None and best_api_cost["total_cost"] > 0:
        aws_hourly = aws_instances[best_aws]["hourly_rate"]
        breakeven_hours = best_api_cost["total_cost"] / aws_hourly
        
        breakeven += f"<p>API vs AWS: <strong>{breakeven_hours:.1f} hours</strong> is the breakeven point.</p>"
        
        if compute_hours > breakeven_hours:
            breakeven += "<p>You're past the breakeven point - AWS hardware is more cost-effective than API usage.</p>"
        else:
            breakeven += "<p>You're below the breakeven point - API usage is more cost-effective than AWS hardware.</p>"
    
    if best_gcp is not None and best_api_cost["total_cost"] > 0:
        gcp_hourly = gcp_instances[best_gcp]["hourly_rate"]
        breakeven_hours = best_api_cost["total_cost"] / gcp_hourly
        
        breakeven += f"<p>API vs GCP: <strong>{breakeven_hours:.1f} hours</strong> is the breakeven point.</p>"
        
        if compute_hours > breakeven_hours:
            breakeven += "<p>You're past the breakeven point - GCP hardware is more cost-effective than API usage.</p>"
        else:
            breakeven += "<p>You're below the breakeven point - API usage is more cost-effective than GCP hardware.</p>"
    
    # Generate cost comparison chart
    fig = px.bar(
        pd.DataFrame(results),
        x="provider",
        y="cost",
        color="type",
        color_discrete_map={"Cloud": "#3B82F6", "API": "#8B5CF6"},
        title="Monthly Cost Comparison",
        labels={"provider": "Provider & Instance", "cost": "Monthly Cost ($)"}
    )
    
    fig.update_layout(height=500)
    
    # Create HTML structure for the results
    html_output = f"""
    <div style="padding: 20px; font-family: Arial, sans-serif;">
        <h2>Cost Comparison Results</h2>
        
        <div style="margin-bottom: 20px;">
            {aws_results}
        </div>
        
        <div style="margin-bottom: 20px;">
            {gcp_results}
        </div>
        
        <div style="margin-bottom: 20px;">
            {api_results}
        </div>
        
        <div style="margin-bottom: 20px;">
            {recommendation}
        </div>
        
        <div style="margin-bottom: 20px;">
            {breakeven}
        </div>
        
        <div style="margin-bottom: 20px;">
            <h3>Additional Considerations</h3>
            <div style="display: flex; gap: 20px;">
                <div style="flex: 1; background-color: #F3F4F6; padding: 15px; border-radius: 8px;">
                    <h4>Cloud Hardware Pros</h4>
                    <ul>
                        <li>Full control over infrastructure and customization</li>
                        <li>Predictable costs for steady, high-volume workloads</li>
                        <li>Can run multiple models simultaneously</li>
                        <li>No token context limitations</li>
                        <li>Data stays on your infrastructure</li>
                    </ul>
                </div>
                <div style="flex: 1; background-color: #F3F4F6; padding: 15px; border-radius: 8px;">
                    <h4>API Endpoints Pros</h4>
                    <ul>
                        <li>No infrastructure management overhead</li>
                        <li>Pay-per-use model (ideal for sporadic usage)</li>
                        <li>Instant scalability</li>
                        <li>No upfront costs or commitment</li>
                        <li>Automatic updates to newer model versions</li>
                    </ul>
                </div>
            </div>
        </div>
        
        <div style="background-color: #FEF3C7; padding: 15px; border-radius: 8px; margin-bottom: 20px;">
            <p><strong>Note:</strong> These estimates are based on current pricing as of May 2025 and may vary based on regional pricing differences, discounts, and usage patterns.</p>
        </div>
    </div>
    """
    
    return html_output, fig

# Main app function
def app_function(
    compute_hours, 
    tokens_per_month, 
    input_ratio, 
    api_calls, 
    model_size, 
    storage_gb, 
    batch_size, 
    reserved_instances, 
    spot_instances, 
    multi_year_commitment
):
    html_output, fig = generate_cost_comparison(
        compute_hours, 
        tokens_per_month, 
        input_ratio, 
        api_calls, 
        model_size, 
        storage_gb, 
        reserved_instances, 
        spot_instances, 
        multi_year_commitment
    )
    
    return html_output, fig

# Define the Gradio interface
with gr.Blocks(title="Cloud Cost Estimator", theme=gr.themes.Soft(primary_hue="indigo")) as demo:
    gr.HTML("""
    <div style="text-align: center; margin-bottom: 20px;">
        <h1 style="color: #4F46E5; font-size: 2.5rem;">Cloud Cost Estimator</h1>
        <p style="font-size: 1.2rem;">Compare costs between cloud hardware configurations and inference API endpoints</p>
    </div>
    """)
    
    with gr.Row():
        with gr.Column(scale=1):
            gr.HTML("<h3>Usage Parameters</h3>")
            
            compute_hours = gr.Slider(
                label="Compute Hours per Month", 
                minimum=1, 
                maximum=730, 
                value=100,
                info="Number of hours you'll run the model per month"
            )
            
            tokens_per_month = gr.Slider(
                label="Tokens Processed per Month (millions)", 
                minimum=1, 
                maximum=1000, 
                value=10,
                info="Total number of tokens processed per month in millions"
            )
            
            input_ratio = gr.Slider(
                label="Input Token Ratio (%)", 
                minimum=10, 
                maximum=90, 
                value=30,
                info="Percentage of total tokens that are input tokens"
            )
            
            api_calls = gr.Slider(
                label="API Calls per Month", 
                minimum=100, 
                maximum=1000000, 
                value=10000,
                step=100,
                info="Number of API calls made per month"
            )
            
            model_size = gr.Dropdown(
                label="Model Size",
                choices=list(model_sizes.keys()),
                value="Medium (13B parameters)",
                info="Size of the language model you want to run"
            )
            
            storage_gb = gr.Slider(
                label="Storage Required (GB)", 
                minimum=10, 
                maximum=1000, 
                value=100,
                info="Amount of storage required for models and data"
            )
            
            batch_size = gr.Slider(
                label="Batch Size", 
                minimum=1, 
                maximum=64, 
                value=4,
                info="Batch size for inference (affects throughput)"
            )
            
            gr.HTML("<h3>Advanced Options</h3>")
            
            reserved_instances = gr.Checkbox(
                label="Use Reserved Instances", 
                value=False,
                info="Reserved instances offer significant discounts with 1-3 year commitments"
            )
            
            spot_instances = gr.Checkbox(
                label="Use Spot/Preemptible Instances", 
                value=False,
                info="Spot instances can be 70-90% cheaper but may be terminated with little notice"
            )
            
            multi_year_commitment = gr.Radio(
                label="Commitment Period (if using Reserved Instances)",
                choices=["1", "3"],
                value="1",
                info="Length of reserved instance commitment in years"
            )
            
            submit_button = gr.Button("Calculate Costs", variant="primary")
        
        with gr.Column(scale=2):
            results_html = gr.HTML(label="Results")
            plot_output = gr.Plot(label="Cost Comparison")
    
    submit_button.click(
        app_function,
        inputs=[
            compute_hours, 
            tokens_per_month, 
            input_ratio, 
            api_calls, 
            model_size, 
            storage_gb, 
            reserved_instances, 
            spot_instances, 
            multi_year_commitment
        ],
        outputs=[results_html, plot_output]
    )
    
    gr.HTML("""
    <div style="margin-top: 30px; border-top: 1px solid #e5e7eb; padding-top: 20px;">
        <h3>Help & Resources</h3>
        <p><strong>Cloud Provider Documentation:</strong>
            <a href="https://aws.amazon.com/ec2/pricing/" target="_blank">AWS EC2 Pricing</a> |
            <a href="https://cloud.google.com/compute/pricing" target="_blank">GCP Compute Engine Pricing</a>
        </p>
        <p><strong>API Provider Documentation:</strong>
            <a href="https://openai.com/pricing" target="_blank">OpenAI API Pricing</a> |
            <a href="https://www.anthropic.com/api" target="_blank">Anthropic Claude API Pricing</a> |
            <a href="https://www.together.ai/pricing" target="_blank">TogetherAI API Pricing</a>
        </p>
        <p>Made with ❤️ by Cloud Cost Estimator | Data last updated: May 2025</p>
    </div>
    """)

demo.launch()
                value=False,
                info="Spot instances can be 70-90% cheaper but may be terminated with little notice"
            )
            
            multi_year_commitment = gr.Radio(
                label="Commitment Period (if using Reserved Instances)",
                choices=[1, 3],
                value=1,
                info="Length of reserved instance commitment in years"
            )
            
            submit_button = gr.Button("Calculate Costs", variant="primary")
        
        with gr.Column(scale=2):
            results_html = gr.HTML(label="Results")
            plot_output = gr.Plot(label="Cost Comparison")
    
    submit_button.click(
        app_function,
        inputs=[
            compute_hours, 
            tokens_per_month, 
            input_ratio, 
            api_calls, 
            model_size, 
            storage_gb, 
            batch_size, 
            reserved_instances, 
            spot_instances, 
            multi_year_commitment
        ],
        outputs=[results_html, plot_output]
    )
    
    gr.HTML("""
    <div style="margin-top: 30px; border-top: 1px solid #e5e7eb; padding-top: 20px;">
        <h3>Help & Resources</h3>
        <p><strong>Cloud Provider Documentation:</strong>
            <a href="https://aws.amazon.com/ec2/pricing/" target="_blank">AWS EC2 Pricing</a> |
            <a href="https://cloud.google.com/compute/pricing" target="_blank">GCP Compute Engine Pricing</a>
        </p>
        <p><strong>API Provider Documentation:</strong>
            <a href="https://openai.com/pricing" target="_blank">OpenAI API Pricing</a> |
            <a href="https://www.anthropic.com/api" target="_blank">Anthropic Claude API Pricing</a> |
            <a href="https://www.together.ai/pricing" target="_blank">TogetherAI API Pricing</a>
        </p>
        <p>Made with ❤️ by Cloud Cost Estimator | Data last updated: May 2025</p>
    </div>
    """)

demo.launch()