|
import os |
|
import re |
|
import shutil |
|
from pathlib import Path |
|
|
|
from smolagents.agent_types import AgentAudio, AgentImage, AgentText |
|
from smolagents.agents import MultiStepAgent, PlanningStep |
|
from smolagents.memory import ActionStep, FinalAnswerStep, MemoryStep |
|
from smolagents.models import ChatMessageStreamDelta |
|
from smolagents.utils import _is_package_available |
|
import xml.etree.ElementTree as ET |
|
|
|
|
|
def get_step_footnote_content(step_log: MemoryStep, step_name: str) -> str: |
|
"""Get a footnote string for a step log with duration and token information""" |
|
step_footnote = f"**{step_name}**" |
|
if hasattr(step_log, "input_token_count") and hasattr(step_log, "output_token_count"): |
|
token_str = f" | Input tokens:{step_log.input_token_count:,} | Output tokens: {step_log.output_token_count:,}" |
|
step_footnote += token_str |
|
if hasattr(step_log, "duration"): |
|
step_duration = f" | Duration: {round(float(step_log.duration), 2)}" if step_log.duration else None |
|
step_footnote += step_duration |
|
step_footnote_content = f"""<span style="color: #bbbbc2; font-size: 12px;">{step_footnote}</span> """ |
|
return step_footnote_content |
|
|
|
|
|
def pull_messages_from_step(step_log: MemoryStep, skip_model_outputs: bool = False): |
|
"""Extract ChatMessage objects from agent steps with proper nesting. |
|
|
|
Args: |
|
step_log: The step log to display as gr.ChatMessage objects. |
|
skip_model_outputs: If True, skip the model outputs when creating the gr.ChatMessage objects: |
|
This is used for instance when streaming model outputs have already been displayed. |
|
""" |
|
if not _is_package_available("gradio"): |
|
raise ModuleNotFoundError( |
|
"Please install 'gradio' extra to use the GradioUI: `pip install 'smolagents[gradio]'`" |
|
) |
|
import gradio as gr |
|
|
|
if isinstance(step_log, ActionStep): |
|
|
|
step_number = f"Step {step_log.step_number}" if step_log.step_number is not None else "Step" |
|
|
|
|
|
if not skip_model_outputs: |
|
yield gr.ChatMessage(role="assistant", content=f"**{step_number}**", metadata={"status": "done"}) |
|
elif skip_model_outputs and hasattr(step_log, "model_output") and step_log.model_output is not None: |
|
model_output = step_log.model_output.strip() |
|
|
|
model_output = re.sub(r"```\s*<end_code>", "```", model_output) |
|
model_output = re.sub(r"<end_code>\s*```", "```", model_output) |
|
model_output = re.sub(r"```\s*\n\s*<end_code>", "```", model_output) |
|
model_output = model_output.strip() |
|
yield gr.ChatMessage(role="assistant", content=model_output, metadata={"status": "done"}) |
|
|
|
|
|
if hasattr(step_log, "tool_calls") and step_log.tool_calls is not None: |
|
first_tool_call = step_log.tool_calls[0] |
|
used_code = first_tool_call.name == "python_interpreter" |
|
|
|
|
|
|
|
args = first_tool_call.arguments |
|
if isinstance(args, dict): |
|
content = str(args.get("answer", str(args))) |
|
else: |
|
content = str(args).strip() |
|
|
|
if used_code: |
|
|
|
content = re.sub(r"```.*?\n", "", content) |
|
content = re.sub(r"\s*<end_code>\s*", "", content) |
|
content = content.strip() |
|
if not content.startswith("```python"): |
|
content = f"```python\n{content}\n```" |
|
|
|
parent_message_tool = gr.ChatMessage( |
|
role="assistant", |
|
content=content, |
|
metadata={ |
|
"title": f"🛠️ Used tool {first_tool_call.name}", |
|
"status": "done", |
|
}, |
|
) |
|
yield parent_message_tool |
|
|
|
|
|
if hasattr(step_log, "observations") and ( |
|
step_log.observations is not None and step_log.observations.strip() |
|
): |
|
log_content = step_log.observations.strip() |
|
if log_content: |
|
log_content = re.sub(r"^Execution logs:\s*", "", log_content) |
|
yield gr.ChatMessage( |
|
role="assistant", |
|
content=f"```bash\n{log_content}\n", |
|
metadata={"title": "📝 Execution Logs", "status": "done"}, |
|
) |
|
|
|
|
|
if hasattr(step_log, "error") and step_log.error is not None: |
|
yield gr.ChatMessage( |
|
role="assistant", |
|
content=str(step_log.error), |
|
metadata={"title": "💥 Error", "status": "done"}, |
|
) |
|
|
|
|
|
if getattr(step_log, "observations_images", []): |
|
for image in step_log.observations_images: |
|
path_image = AgentImage(image).to_string() |
|
yield gr.ChatMessage( |
|
role="assistant", |
|
content={"path": path_image, "mime_type": f"image/{path_image.split('.')[-1]}"}, |
|
metadata={"title": "🖼️ Output Image", "status": "done"}, |
|
) |
|
|
|
|
|
if hasattr(step_log, "error") and step_log.error is not None: |
|
yield gr.ChatMessage( |
|
role="assistant", content=str(step_log.error), metadata={"title": "💥 Error", "status": "done"} |
|
) |
|
|
|
yield gr.ChatMessage( |
|
role="assistant", content=get_step_footnote_content(step_log, step_number), metadata={"status": "done"} |
|
) |
|
yield gr.ChatMessage(role="assistant", content="-----", metadata={"status": "done"}) |
|
|
|
elif isinstance(step_log, PlanningStep): |
|
yield gr.ChatMessage(role="assistant", content="**Planning step**", metadata={"status": "done"}) |
|
yield gr.ChatMessage(role="assistant", content=step_log.plan, metadata={"status": "done"}) |
|
yield gr.ChatMessage( |
|
role="assistant", content=get_step_footnote_content(step_log, "Planning step"), metadata={"status": "done"} |
|
) |
|
yield gr.ChatMessage(role="assistant", content="-----", metadata={"status": "done"}) |
|
|
|
elif isinstance(step_log, FinalAnswerStep): |
|
final_answer = step_log.final_answer |
|
if isinstance(final_answer, AgentText): |
|
yield gr.ChatMessage( |
|
role="assistant", |
|
content=f"**Final answer:**\n{final_answer.to_string()}\n", |
|
metadata={"status": "done"}, |
|
) |
|
elif isinstance(final_answer, AgentImage): |
|
yield gr.ChatMessage( |
|
role="assistant", |
|
content={"path": final_answer.to_string(), "mime_type": "image/png"}, |
|
metadata={"status": "done"}, |
|
) |
|
elif isinstance(final_answer, AgentAudio): |
|
yield gr.ChatMessage( |
|
role="assistant", |
|
content={"path": final_answer.to_string(), "mime_type": "audio/wav"}, |
|
metadata={"status": "done"}, |
|
) |
|
else: |
|
yield gr.ChatMessage( |
|
role="assistant", content=f"**Final answer:** {str(final_answer)}", metadata={"status": "done"} |
|
) |
|
|
|
else: |
|
raise ValueError(f"Unsupported step type: {type(step_log)}") |
|
|
|
|
|
def stream_to_gradio( |
|
agent, |
|
task: str, |
|
task_images: list | None = None, |
|
reset_agent_memory: bool = False, |
|
additional_args: dict | None = None, |
|
): |
|
"""Runs an agent with the given task and streams the messages from the agent as gradio ChatMessages.""" |
|
total_input_tokens = 0 |
|
total_output_tokens = 0 |
|
|
|
if not _is_package_available("gradio"): |
|
raise ModuleNotFoundError( |
|
"Please install 'gradio' extra to use the GradioUI: `pip install 'smolagents[gradio]'`" |
|
) |
|
|
|
intermediate_text = "" |
|
|
|
for step_log in agent.run( |
|
task, images=task_images, stream=True, reset=reset_agent_memory, additional_args=additional_args |
|
): |
|
|
|
if getattr(agent.model, "last_input_token_count", None) is not None: |
|
total_input_tokens += agent.model.last_input_token_count |
|
total_output_tokens += agent.model.last_output_token_count |
|
if isinstance(step_log, (ActionStep, PlanningStep)): |
|
step_log.input_token_count = agent.model.last_input_token_count |
|
step_log.output_token_count = agent.model.last_output_token_count |
|
|
|
if isinstance(step_log, MemoryStep): |
|
intermediate_text = "" |
|
for message in pull_messages_from_step( |
|
step_log, |
|
|
|
skip_model_outputs=getattr(agent, "stream_outputs", False), |
|
): |
|
yield message |
|
elif isinstance(step_log, ChatMessageStreamDelta): |
|
intermediate_text += step_log.content or "" |
|
yield intermediate_text |
|
|
|
def extract_vehicle_info_as_string(adf_xml): |
|
root = ET.fromstring(adf_xml) |
|
|
|
|
|
vehicle = root.find('.//vehicle') |
|
|
|
if vehicle is not None: |
|
year = vehicle.find('year').text if vehicle.find('year') is not None else "" |
|
make = vehicle.find('make').text if vehicle.find('make') is not None else "" |
|
model = vehicle.find('model').text if vehicle.find('model') is not None else "" |
|
vehicle_info = f"{year} {make} {model}".strip() |
|
|
|
|
|
first_name = "" |
|
name_element = root.find('.//name[@part="first"]') |
|
if name_element is not None: |
|
first_name = name_element.text.strip() if name_element.text else "" |
|
return first_name, vehicle_info |
|
|
|
|
|
class GradioUI: |
|
"""A one-line interface to launch your agent in Gradio""" |
|
|
|
def __init__(self, agent: MultiStepAgent, file_upload_folder: str | None = None): |
|
if not _is_package_available("gradio"): |
|
raise ModuleNotFoundError( |
|
"Please install 'gradio' extra to use the GradioUI: `pip install 'smolagents[gradio]'`" |
|
) |
|
self.agent = agent |
|
self.file_upload_folder = Path(file_upload_folder) if file_upload_folder is not None else None |
|
self.name = getattr(agent, "name") or "OTTO: The Car Sales Agent" |
|
self.description = getattr(agent, "description", None) |
|
if self.file_upload_folder is not None: |
|
if not self.file_upload_folder.exists(): |
|
self.file_upload_folder.mkdir(parents=True, exist_ok=True) |
|
|
|
def interact_with_agent(self, prompt, messages, session_state, car_site, adf_lead): |
|
import gradio as gr |
|
self.agent.prompt_templates["system_prompt"] += f"\n\nWhen answering a customer's question about the dealership or other cars, use the following site to find the information:\n\nDealership Site: {car_site}\n\nWhen answering a customer's question about the specific car use the following ADF Lead:\n\nADF Lead: {adf_lead}" |
|
|
|
if "agent" not in session_state: |
|
session_state["agent"] = self.agent |
|
|
|
try: |
|
messages.append(gr.ChatMessage(role="user", content=prompt, metadata={"status": "done"})) |
|
yield messages |
|
|
|
for msg in stream_to_gradio(session_state["agent"], task=prompt, reset_agent_memory=False): |
|
if isinstance(msg, gr.ChatMessage): |
|
messages.append(msg) |
|
elif isinstance(msg, str): |
|
try: |
|
if messages[-1].metadata["status"] == "pending": |
|
messages[-1].content = msg |
|
else: |
|
messages.append( |
|
gr.ChatMessage(role="assistant", content=msg, metadata={"status": "pending"}) |
|
) |
|
except Exception as e: |
|
raise e |
|
yield messages |
|
|
|
yield messages |
|
except Exception as e: |
|
print(f"Error in interaction: {str(e)}") |
|
messages.append(gr.ChatMessage(role="assistant", content=f"Error: {str(e)}")) |
|
yield messages |
|
|
|
def upload_file(self, file, file_uploads_log, allowed_file_types=None): |
|
""" |
|
Handle file uploads, default allowed types are .pdf, .docx, and .txt |
|
""" |
|
import gradio as gr |
|
|
|
if file is None: |
|
return gr.Textbox(value="No file uploaded", visible=True), file_uploads_log |
|
|
|
if allowed_file_types is None: |
|
allowed_file_types = [".pdf", ".docx", ".txt"] |
|
|
|
file_ext = os.path.splitext(file.name)[1].lower() |
|
if file_ext not in allowed_file_types: |
|
return gr.Textbox("File type disallowed", visible=True), file_uploads_log |
|
|
|
|
|
original_name = os.path.basename(file.name) |
|
sanitized_name = re.sub( |
|
r"[^\w\-.]", "_", original_name |
|
) |
|
|
|
|
|
file_path = os.path.join(self.file_upload_folder, os.path.basename(sanitized_name)) |
|
shutil.copy(file.name, file_path) |
|
|
|
return gr.Textbox(f"File uploaded: {file_path}", visible=True), file_uploads_log + [file_path] |
|
|
|
def log_user_message(self, text_input, file_uploads_log): |
|
import gradio as gr |
|
|
|
return ( |
|
text_input |
|
+ ( |
|
f"\nYou have been provided with these files, which might be helpful or not: {file_uploads_log}" |
|
if len(file_uploads_log) > 0 |
|
else "" |
|
), |
|
"", |
|
gr.Button(interactive=False), |
|
) |
|
|
|
def launch(self, share: bool = True, **kwargs): |
|
self.create_app().launch(debug=True, share=share, **kwargs) |
|
|
|
def create_app(self): |
|
import gradio as gr |
|
|
|
with gr.Blocks(theme="ocean", fill_height=True) as demo: |
|
|
|
session_state = gr.State({}) |
|
stored_messages = gr.State([]) |
|
file_uploads_log = gr.State([]) |
|
|
|
with gr.Sidebar(): |
|
gr.Markdown( |
|
f"# {self.name.replace('_', ' ')}" |
|
"\n> Test the OTTO Agent by asking it questions." |
|
+ (f"\n\n**Agent description:**\n{self.description}" if self.description else "") |
|
) |
|
|
|
with gr.Group(): |
|
gr.Markdown("**Your request**", container=True) |
|
text_input = gr.Textbox( |
|
lines=3, |
|
label="Chat Message", |
|
container=False, |
|
placeholder="Enter your prompt here and press Shift+Enter or press the button", |
|
) |
|
submit_btn = gr.Button("Submit", variant="primary") |
|
with gr.Accordion("Dealership Info", open=False): |
|
car_site = gr.Textbox(label="Car Gurus Dealership Site", lines=2, value="https://www.cargurus.com/Cars/m-Ohio-Cars-sp458596", interactive=True) |
|
adf_lead = gr.Textbox(label="ADF Lead", lines=4, value="<?xml version=\"1.0\"?><?ADF version=\"1.0\"?><adf><prospect><requestdate>2025-05-12T13:59:30</requestdate><vehicle status=\"used\"><id source=\"CarsForSale.com\">16f3114e-825f-4eb0-8165-ce43fe5143b6</id><year>2016</year><make>Toyota</make><model>Corolla</model><vin>5YFBURHE4GP511115</vin><stock></stock><comments>DP</comments><colorcombination><exteriorcolor>Super White</exteriorcolor></colorcombination><miles>131024.0</miles><price type=\"asking\">9950</price></vehicle><customer><contact><name part=\"first\">Test</name><name part=\"last\">Lead</name><name part=\"full\">Test Lead</name><email>123@gmail.com</email><phone>2582584568</phone><address><city></city><state></state><postalcode></postalcode></address></contact><comments><![CDATA[I'm interested and want to know more about the 2016 Toyota Corolla S Plus you have listed for $9,950 on Cars For Sale.]]></comments><timeframe><description></description></timeframe></customer><provider><id>19971</id><name part=\"full\">Carsforsale.com</name><service>Carsforsale.com</service><phone>866-388-9778</phone></provider><vendor><id>114483</id><vendorname>Ohio Cars</vendorname></vendor></prospect></adf>", interactive=False) |
|
|
|
if self.file_upload_folder is not None: |
|
upload_file = gr.File(label="Upload a file") |
|
upload_status = gr.Textbox(label="Upload Status", interactive=False, visible=False) |
|
upload_file.change( |
|
self.upload_file, |
|
[upload_file, file_uploads_log], |
|
[upload_status, file_uploads_log], |
|
) |
|
|
|
first_name, vehicle_info = extract_vehicle_info_as_string(adf_lead.value) |
|
message = gr.ChatMessage(role="assistant", content=f"Hi {first_name}! The {vehicle_info} you're interested in is available at [OhioCars.com](https://www.ohiocars.com). Would you like to schedule a visit to check it out? We have appointment slots at 11 AM, 1 PM, or 3 PM. Which time works best for you?", metadata={"status": "done"}) |
|
|
|
chatbot = gr.Chatbot( |
|
label="Agent", |
|
type="messages", |
|
value=[message], |
|
avatar_images=( |
|
None, |
|
"https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/smolagents/mascot_smol.png", |
|
), |
|
resizeable=True, |
|
scale=1, |
|
) |
|
|
|
|
|
text_input.submit( |
|
self.log_user_message, |
|
[text_input, file_uploads_log], |
|
[stored_messages, text_input, submit_btn], |
|
).then(self.interact_with_agent, [stored_messages, chatbot, session_state, car_site, adf_lead], [chatbot]).then( |
|
lambda: ( |
|
gr.Textbox( |
|
interactive=True, placeholder="Enter your prompt here and press Shift+Enter or the button" |
|
), |
|
gr.Button(interactive=True), |
|
), |
|
None, |
|
[text_input, submit_btn], |
|
) |
|
|
|
submit_btn.click( |
|
self.log_user_message, |
|
[text_input, file_uploads_log], |
|
[stored_messages, text_input, submit_btn], |
|
).then(self.interact_with_agent, [stored_messages, chatbot, session_state, car_site, adf_lead], [chatbot]).then( |
|
lambda: ( |
|
gr.Textbox( |
|
interactive=True, placeholder="Enter your prompt here and press Shift+Enter or the button" |
|
), |
|
gr.Button(interactive=True), |
|
), |
|
None, |
|
[text_input, submit_btn], |
|
) |
|
|
|
return demo |
|
|
|
|
|
__all__ = ["stream_to_gradio", "GradioUI"] |
|
|