OTTO / gradio_ui.py
dawoodkhan82's picture
first
3dd44e9
import os
import re
import shutil
from pathlib import Path
from smolagents.agent_types import AgentAudio, AgentImage, AgentText
from smolagents.agents import MultiStepAgent, PlanningStep
from smolagents.memory import ActionStep, FinalAnswerStep, MemoryStep
from smolagents.models import ChatMessageStreamDelta
from smolagents.utils import _is_package_available
import xml.etree.ElementTree as ET
def get_step_footnote_content(step_log: MemoryStep, step_name: str) -> str:
"""Get a footnote string for a step log with duration and token information"""
step_footnote = f"**{step_name}**"
if hasattr(step_log, "input_token_count") and hasattr(step_log, "output_token_count"):
token_str = f" | Input tokens:{step_log.input_token_count:,} | Output tokens: {step_log.output_token_count:,}"
step_footnote += token_str
if hasattr(step_log, "duration"):
step_duration = f" | Duration: {round(float(step_log.duration), 2)}" if step_log.duration else None
step_footnote += step_duration
step_footnote_content = f"""<span style="color: #bbbbc2; font-size: 12px;">{step_footnote}</span> """
return step_footnote_content
def pull_messages_from_step(step_log: MemoryStep, skip_model_outputs: bool = False):
"""Extract ChatMessage objects from agent steps with proper nesting.
Args:
step_log: The step log to display as gr.ChatMessage objects.
skip_model_outputs: If True, skip the model outputs when creating the gr.ChatMessage objects:
This is used for instance when streaming model outputs have already been displayed.
"""
if not _is_package_available("gradio"):
raise ModuleNotFoundError(
"Please install 'gradio' extra to use the GradioUI: `pip install 'smolagents[gradio]'`"
)
import gradio as gr
if isinstance(step_log, ActionStep):
# Output the step number
step_number = f"Step {step_log.step_number}" if step_log.step_number is not None else "Step"
# First yield the thought/reasoning from the LLM
if not skip_model_outputs:
yield gr.ChatMessage(role="assistant", content=f"**{step_number}**", metadata={"status": "done"})
elif skip_model_outputs and hasattr(step_log, "model_output") and step_log.model_output is not None:
model_output = step_log.model_output.strip()
# Remove any trailing <end_code> and extra backticks, handling multiple possible formats
model_output = re.sub(r"```\s*<end_code>", "```", model_output) # handles ```<end_code>
model_output = re.sub(r"<end_code>\s*```", "```", model_output) # handles <end_code>```
model_output = re.sub(r"```\s*\n\s*<end_code>", "```", model_output) # handles ```\n<end_code>
model_output = model_output.strip()
yield gr.ChatMessage(role="assistant", content=model_output, metadata={"status": "done"})
# For tool calls, create a parent message
if hasattr(step_log, "tool_calls") and step_log.tool_calls is not None:
first_tool_call = step_log.tool_calls[0]
used_code = first_tool_call.name == "python_interpreter"
# Tool call becomes the parent message with timing info
# First we will handle arguments based on type
args = first_tool_call.arguments
if isinstance(args, dict):
content = str(args.get("answer", str(args)))
else:
content = str(args).strip()
if used_code:
# Clean up the content by removing any end code tags
content = re.sub(r"```.*?\n", "", content) # Remove existing code blocks
content = re.sub(r"\s*<end_code>\s*", "", content) # Remove end_code tags
content = content.strip()
if not content.startswith("```python"):
content = f"```python\n{content}\n```"
parent_message_tool = gr.ChatMessage(
role="assistant",
content=content,
metadata={
"title": f"🛠️ Used tool {first_tool_call.name}",
"status": "done",
},
)
yield parent_message_tool
# Display execution logs if they exist
if hasattr(step_log, "observations") and (
step_log.observations is not None and step_log.observations.strip()
): # Only yield execution logs if there's actual content
log_content = step_log.observations.strip()
if log_content:
log_content = re.sub(r"^Execution logs:\s*", "", log_content)
yield gr.ChatMessage(
role="assistant",
content=f"```bash\n{log_content}\n",
metadata={"title": "📝 Execution Logs", "status": "done"},
)
# Display any errors
if hasattr(step_log, "error") and step_log.error is not None:
yield gr.ChatMessage(
role="assistant",
content=str(step_log.error),
metadata={"title": "💥 Error", "status": "done"},
)
# Update parent message metadata to done status without yielding a new message
if getattr(step_log, "observations_images", []):
for image in step_log.observations_images:
path_image = AgentImage(image).to_string()
yield gr.ChatMessage(
role="assistant",
content={"path": path_image, "mime_type": f"image/{path_image.split('.')[-1]}"},
metadata={"title": "🖼️ Output Image", "status": "done"},
)
# Handle standalone errors but not from tool calls
if hasattr(step_log, "error") and step_log.error is not None:
yield gr.ChatMessage(
role="assistant", content=str(step_log.error), metadata={"title": "💥 Error", "status": "done"}
)
yield gr.ChatMessage(
role="assistant", content=get_step_footnote_content(step_log, step_number), metadata={"status": "done"}
)
yield gr.ChatMessage(role="assistant", content="-----", metadata={"status": "done"})
elif isinstance(step_log, PlanningStep):
yield gr.ChatMessage(role="assistant", content="**Planning step**", metadata={"status": "done"})
yield gr.ChatMessage(role="assistant", content=step_log.plan, metadata={"status": "done"})
yield gr.ChatMessage(
role="assistant", content=get_step_footnote_content(step_log, "Planning step"), metadata={"status": "done"}
)
yield gr.ChatMessage(role="assistant", content="-----", metadata={"status": "done"})
elif isinstance(step_log, FinalAnswerStep):
final_answer = step_log.final_answer
if isinstance(final_answer, AgentText):
yield gr.ChatMessage(
role="assistant",
content=f"**Final answer:**\n{final_answer.to_string()}\n",
metadata={"status": "done"},
)
elif isinstance(final_answer, AgentImage):
yield gr.ChatMessage(
role="assistant",
content={"path": final_answer.to_string(), "mime_type": "image/png"},
metadata={"status": "done"},
)
elif isinstance(final_answer, AgentAudio):
yield gr.ChatMessage(
role="assistant",
content={"path": final_answer.to_string(), "mime_type": "audio/wav"},
metadata={"status": "done"},
)
else:
yield gr.ChatMessage(
role="assistant", content=f"**Final answer:** {str(final_answer)}", metadata={"status": "done"}
)
else:
raise ValueError(f"Unsupported step type: {type(step_log)}")
def stream_to_gradio(
agent,
task: str,
task_images: list | None = None,
reset_agent_memory: bool = False,
additional_args: dict | None = None,
):
"""Runs an agent with the given task and streams the messages from the agent as gradio ChatMessages."""
total_input_tokens = 0
total_output_tokens = 0
if not _is_package_available("gradio"):
raise ModuleNotFoundError(
"Please install 'gradio' extra to use the GradioUI: `pip install 'smolagents[gradio]'`"
)
intermediate_text = ""
for step_log in agent.run(
task, images=task_images, stream=True, reset=reset_agent_memory, additional_args=additional_args
):
# Track tokens if model provides them
if getattr(agent.model, "last_input_token_count", None) is not None:
total_input_tokens += agent.model.last_input_token_count
total_output_tokens += agent.model.last_output_token_count
if isinstance(step_log, (ActionStep, PlanningStep)):
step_log.input_token_count = agent.model.last_input_token_count
step_log.output_token_count = agent.model.last_output_token_count
if isinstance(step_log, MemoryStep):
intermediate_text = ""
for message in pull_messages_from_step(
step_log,
# If we're streaming model outputs, no need to display them twice
skip_model_outputs=getattr(agent, "stream_outputs", False),
):
yield message
elif isinstance(step_log, ChatMessageStreamDelta):
intermediate_text += step_log.content or ""
yield intermediate_text
def extract_vehicle_info_as_string(adf_xml):
root = ET.fromstring(adf_xml)
# Find the vehicle element
vehicle = root.find('.//vehicle')
if vehicle is not None:
year = vehicle.find('year').text if vehicle.find('year') is not None else ""
make = vehicle.find('make').text if vehicle.find('make') is not None else ""
model = vehicle.find('model').text if vehicle.find('model') is not None else ""
vehicle_info = f"{year} {make} {model}".strip()
# Extract first name
first_name = ""
name_element = root.find('.//name[@part="first"]')
if name_element is not None:
first_name = name_element.text.strip() if name_element.text else ""
return first_name, vehicle_info
class GradioUI:
"""A one-line interface to launch your agent in Gradio"""
def __init__(self, agent: MultiStepAgent, file_upload_folder: str | None = None):
if not _is_package_available("gradio"):
raise ModuleNotFoundError(
"Please install 'gradio' extra to use the GradioUI: `pip install 'smolagents[gradio]'`"
)
self.agent = agent
self.file_upload_folder = Path(file_upload_folder) if file_upload_folder is not None else None
self.name = getattr(agent, "name") or "OTTO: The Car Sales Agent"
self.description = getattr(agent, "description", None)
if self.file_upload_folder is not None:
if not self.file_upload_folder.exists():
self.file_upload_folder.mkdir(parents=True, exist_ok=True)
def interact_with_agent(self, prompt, messages, session_state, car_site, adf_lead):
import gradio as gr
self.agent.prompt_templates["system_prompt"] += f"\n\nWhen answering a customer's question about the dealership or other cars, use the following site to find the information:\n\nDealership Site: {car_site}\n\nWhen answering a customer's question about the specific car use the following ADF Lead:\n\nADF Lead: {adf_lead}"
# Get the agent type from the template agent
if "agent" not in session_state:
session_state["agent"] = self.agent
try:
messages.append(gr.ChatMessage(role="user", content=prompt, metadata={"status": "done"}))
yield messages
for msg in stream_to_gradio(session_state["agent"], task=prompt, reset_agent_memory=False):
if isinstance(msg, gr.ChatMessage):
messages.append(msg)
elif isinstance(msg, str): # Then it's only a completion delta
try:
if messages[-1].metadata["status"] == "pending":
messages[-1].content = msg
else:
messages.append(
gr.ChatMessage(role="assistant", content=msg, metadata={"status": "pending"})
)
except Exception as e:
raise e
yield messages
yield messages
except Exception as e:
print(f"Error in interaction: {str(e)}")
messages.append(gr.ChatMessage(role="assistant", content=f"Error: {str(e)}"))
yield messages
def upload_file(self, file, file_uploads_log, allowed_file_types=None):
"""
Handle file uploads, default allowed types are .pdf, .docx, and .txt
"""
import gradio as gr
if file is None:
return gr.Textbox(value="No file uploaded", visible=True), file_uploads_log
if allowed_file_types is None:
allowed_file_types = [".pdf", ".docx", ".txt"]
file_ext = os.path.splitext(file.name)[1].lower()
if file_ext not in allowed_file_types:
return gr.Textbox("File type disallowed", visible=True), file_uploads_log
# Sanitize file name
original_name = os.path.basename(file.name)
sanitized_name = re.sub(
r"[^\w\-.]", "_", original_name
) # Replace any non-alphanumeric, non-dash, or non-dot characters with underscores
# Save the uploaded file to the specified folder
file_path = os.path.join(self.file_upload_folder, os.path.basename(sanitized_name))
shutil.copy(file.name, file_path)
return gr.Textbox(f"File uploaded: {file_path}", visible=True), file_uploads_log + [file_path]
def log_user_message(self, text_input, file_uploads_log):
import gradio as gr
return (
text_input
+ (
f"\nYou have been provided with these files, which might be helpful or not: {file_uploads_log}"
if len(file_uploads_log) > 0
else ""
),
"",
gr.Button(interactive=False),
)
def launch(self, share: bool = True, **kwargs):
self.create_app().launch(debug=True, share=share, **kwargs)
def create_app(self):
import gradio as gr
with gr.Blocks(theme="ocean", fill_height=True) as demo:
# Add session state to store session-specific data
session_state = gr.State({})
stored_messages = gr.State([])
file_uploads_log = gr.State([])
with gr.Sidebar():
gr.Markdown(
f"# {self.name.replace('_', ' ')}"
"\n> Test the OTTO Agent by asking it questions."
+ (f"\n\n**Agent description:**\n{self.description}" if self.description else "")
)
with gr.Group():
gr.Markdown("**Your request**", container=True)
text_input = gr.Textbox(
lines=3,
label="Chat Message",
container=False,
placeholder="Enter your prompt here and press Shift+Enter or press the button",
)
submit_btn = gr.Button("Submit", variant="primary")
with gr.Accordion("Dealership Info", open=False):
car_site = gr.Textbox(label="Car Gurus Dealership Site", lines=2, value="https://www.cargurus.com/Cars/m-Ohio-Cars-sp458596", interactive=True)
adf_lead = gr.Textbox(label="ADF Lead", lines=4, value="<?xml version=\"1.0\"?><?ADF version=\"1.0\"?><adf><prospect><requestdate>2025-05-12T13:59:30</requestdate><vehicle status=\"used\"><id source=\"CarsForSale.com\">16f3114e-825f-4eb0-8165-ce43fe5143b6</id><year>2016</year><make>Toyota</make><model>Corolla</model><vin>5YFBURHE4GP511115</vin><stock></stock><comments>DP</comments><colorcombination><exteriorcolor>Super White</exteriorcolor></colorcombination><miles>131024.0</miles><price type=\"asking\">9950</price></vehicle><customer><contact><name part=\"first\">Test</name><name part=\"last\">Lead</name><name part=\"full\">Test Lead</name><email>123@gmail.com</email><phone>2582584568</phone><address><city></city><state></state><postalcode></postalcode></address></contact><comments><![CDATA[I'm interested and want to know more about the 2016 Toyota Corolla S Plus you have listed for $9,950 on Cars For Sale.]]></comments><timeframe><description></description></timeframe></customer><provider><id>19971</id><name part=\"full\">Carsforsale.com</name><service>Carsforsale.com</service><phone>866-388-9778</phone></provider><vendor><id>114483</id><vendorname>Ohio Cars</vendorname></vendor></prospect></adf>", interactive=False)
# If an upload folder is provided, enable the upload feature
if self.file_upload_folder is not None:
upload_file = gr.File(label="Upload a file")
upload_status = gr.Textbox(label="Upload Status", interactive=False, visible=False)
upload_file.change(
self.upload_file,
[upload_file, file_uploads_log],
[upload_status, file_uploads_log],
)
first_name, vehicle_info = extract_vehicle_info_as_string(adf_lead.value)
message = gr.ChatMessage(role="assistant", content=f"Hi {first_name}! The {vehicle_info} you're interested in is available at [OhioCars.com](https://www.ohiocars.com). Would you like to schedule a visit to check it out? We have appointment slots at 11 AM, 1 PM, or 3 PM. Which time works best for you?", metadata={"status": "done"})
# Main chat interface
chatbot = gr.Chatbot(
label="Agent",
type="messages",
value=[message],
avatar_images=(
None,
"https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/smolagents/mascot_smol.png",
),
resizeable=True,
scale=1,
)
# Set up event handlers
text_input.submit(
self.log_user_message,
[text_input, file_uploads_log],
[stored_messages, text_input, submit_btn],
).then(self.interact_with_agent, [stored_messages, chatbot, session_state, car_site, adf_lead], [chatbot]).then(
lambda: (
gr.Textbox(
interactive=True, placeholder="Enter your prompt here and press Shift+Enter or the button"
),
gr.Button(interactive=True),
),
None,
[text_input, submit_btn],
)
submit_btn.click(
self.log_user_message,
[text_input, file_uploads_log],
[stored_messages, text_input, submit_btn],
).then(self.interact_with_agent, [stored_messages, chatbot, session_state, car_site, adf_lead], [chatbot]).then(
lambda: (
gr.Textbox(
interactive=True, placeholder="Enter your prompt here and press Shift+Enter or the button"
),
gr.Button(interactive=True),
),
None,
[text_input, submit_btn],
)
return demo
__all__ = ["stream_to_gradio", "GradioUI"]