File size: 19,961 Bytes
3dd44e9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 |
import os
import re
import shutil
from pathlib import Path
from smolagents.agent_types import AgentAudio, AgentImage, AgentText
from smolagents.agents import MultiStepAgent, PlanningStep
from smolagents.memory import ActionStep, FinalAnswerStep, MemoryStep
from smolagents.models import ChatMessageStreamDelta
from smolagents.utils import _is_package_available
import xml.etree.ElementTree as ET
def get_step_footnote_content(step_log: MemoryStep, step_name: str) -> str:
"""Get a footnote string for a step log with duration and token information"""
step_footnote = f"**{step_name}**"
if hasattr(step_log, "input_token_count") and hasattr(step_log, "output_token_count"):
token_str = f" | Input tokens:{step_log.input_token_count:,} | Output tokens: {step_log.output_token_count:,}"
step_footnote += token_str
if hasattr(step_log, "duration"):
step_duration = f" | Duration: {round(float(step_log.duration), 2)}" if step_log.duration else None
step_footnote += step_duration
step_footnote_content = f"""<span style="color: #bbbbc2; font-size: 12px;">{step_footnote}</span> """
return step_footnote_content
def pull_messages_from_step(step_log: MemoryStep, skip_model_outputs: bool = False):
"""Extract ChatMessage objects from agent steps with proper nesting.
Args:
step_log: The step log to display as gr.ChatMessage objects.
skip_model_outputs: If True, skip the model outputs when creating the gr.ChatMessage objects:
This is used for instance when streaming model outputs have already been displayed.
"""
if not _is_package_available("gradio"):
raise ModuleNotFoundError(
"Please install 'gradio' extra to use the GradioUI: `pip install 'smolagents[gradio]'`"
)
import gradio as gr
if isinstance(step_log, ActionStep):
# Output the step number
step_number = f"Step {step_log.step_number}" if step_log.step_number is not None else "Step"
# First yield the thought/reasoning from the LLM
if not skip_model_outputs:
yield gr.ChatMessage(role="assistant", content=f"**{step_number}**", metadata={"status": "done"})
elif skip_model_outputs and hasattr(step_log, "model_output") and step_log.model_output is not None:
model_output = step_log.model_output.strip()
# Remove any trailing <end_code> and extra backticks, handling multiple possible formats
model_output = re.sub(r"```\s*<end_code>", "```", model_output) # handles ```<end_code>
model_output = re.sub(r"<end_code>\s*```", "```", model_output) # handles <end_code>```
model_output = re.sub(r"```\s*\n\s*<end_code>", "```", model_output) # handles ```\n<end_code>
model_output = model_output.strip()
yield gr.ChatMessage(role="assistant", content=model_output, metadata={"status": "done"})
# For tool calls, create a parent message
if hasattr(step_log, "tool_calls") and step_log.tool_calls is not None:
first_tool_call = step_log.tool_calls[0]
used_code = first_tool_call.name == "python_interpreter"
# Tool call becomes the parent message with timing info
# First we will handle arguments based on type
args = first_tool_call.arguments
if isinstance(args, dict):
content = str(args.get("answer", str(args)))
else:
content = str(args).strip()
if used_code:
# Clean up the content by removing any end code tags
content = re.sub(r"```.*?\n", "", content) # Remove existing code blocks
content = re.sub(r"\s*<end_code>\s*", "", content) # Remove end_code tags
content = content.strip()
if not content.startswith("```python"):
content = f"```python\n{content}\n```"
parent_message_tool = gr.ChatMessage(
role="assistant",
content=content,
metadata={
"title": f"π οΈ Used tool {first_tool_call.name}",
"status": "done",
},
)
yield parent_message_tool
# Display execution logs if they exist
if hasattr(step_log, "observations") and (
step_log.observations is not None and step_log.observations.strip()
): # Only yield execution logs if there's actual content
log_content = step_log.observations.strip()
if log_content:
log_content = re.sub(r"^Execution logs:\s*", "", log_content)
yield gr.ChatMessage(
role="assistant",
content=f"```bash\n{log_content}\n",
metadata={"title": "π Execution Logs", "status": "done"},
)
# Display any errors
if hasattr(step_log, "error") and step_log.error is not None:
yield gr.ChatMessage(
role="assistant",
content=str(step_log.error),
metadata={"title": "π₯ Error", "status": "done"},
)
# Update parent message metadata to done status without yielding a new message
if getattr(step_log, "observations_images", []):
for image in step_log.observations_images:
path_image = AgentImage(image).to_string()
yield gr.ChatMessage(
role="assistant",
content={"path": path_image, "mime_type": f"image/{path_image.split('.')[-1]}"},
metadata={"title": "πΌοΈ Output Image", "status": "done"},
)
# Handle standalone errors but not from tool calls
if hasattr(step_log, "error") and step_log.error is not None:
yield gr.ChatMessage(
role="assistant", content=str(step_log.error), metadata={"title": "π₯ Error", "status": "done"}
)
yield gr.ChatMessage(
role="assistant", content=get_step_footnote_content(step_log, step_number), metadata={"status": "done"}
)
yield gr.ChatMessage(role="assistant", content="-----", metadata={"status": "done"})
elif isinstance(step_log, PlanningStep):
yield gr.ChatMessage(role="assistant", content="**Planning step**", metadata={"status": "done"})
yield gr.ChatMessage(role="assistant", content=step_log.plan, metadata={"status": "done"})
yield gr.ChatMessage(
role="assistant", content=get_step_footnote_content(step_log, "Planning step"), metadata={"status": "done"}
)
yield gr.ChatMessage(role="assistant", content="-----", metadata={"status": "done"})
elif isinstance(step_log, FinalAnswerStep):
final_answer = step_log.final_answer
if isinstance(final_answer, AgentText):
yield gr.ChatMessage(
role="assistant",
content=f"**Final answer:**\n{final_answer.to_string()}\n",
metadata={"status": "done"},
)
elif isinstance(final_answer, AgentImage):
yield gr.ChatMessage(
role="assistant",
content={"path": final_answer.to_string(), "mime_type": "image/png"},
metadata={"status": "done"},
)
elif isinstance(final_answer, AgentAudio):
yield gr.ChatMessage(
role="assistant",
content={"path": final_answer.to_string(), "mime_type": "audio/wav"},
metadata={"status": "done"},
)
else:
yield gr.ChatMessage(
role="assistant", content=f"**Final answer:** {str(final_answer)}", metadata={"status": "done"}
)
else:
raise ValueError(f"Unsupported step type: {type(step_log)}")
def stream_to_gradio(
agent,
task: str,
task_images: list | None = None,
reset_agent_memory: bool = False,
additional_args: dict | None = None,
):
"""Runs an agent with the given task and streams the messages from the agent as gradio ChatMessages."""
total_input_tokens = 0
total_output_tokens = 0
if not _is_package_available("gradio"):
raise ModuleNotFoundError(
"Please install 'gradio' extra to use the GradioUI: `pip install 'smolagents[gradio]'`"
)
intermediate_text = ""
for step_log in agent.run(
task, images=task_images, stream=True, reset=reset_agent_memory, additional_args=additional_args
):
# Track tokens if model provides them
if getattr(agent.model, "last_input_token_count", None) is not None:
total_input_tokens += agent.model.last_input_token_count
total_output_tokens += agent.model.last_output_token_count
if isinstance(step_log, (ActionStep, PlanningStep)):
step_log.input_token_count = agent.model.last_input_token_count
step_log.output_token_count = agent.model.last_output_token_count
if isinstance(step_log, MemoryStep):
intermediate_text = ""
for message in pull_messages_from_step(
step_log,
# If we're streaming model outputs, no need to display them twice
skip_model_outputs=getattr(agent, "stream_outputs", False),
):
yield message
elif isinstance(step_log, ChatMessageStreamDelta):
intermediate_text += step_log.content or ""
yield intermediate_text
def extract_vehicle_info_as_string(adf_xml):
root = ET.fromstring(adf_xml)
# Find the vehicle element
vehicle = root.find('.//vehicle')
if vehicle is not None:
year = vehicle.find('year').text if vehicle.find('year') is not None else ""
make = vehicle.find('make').text if vehicle.find('make') is not None else ""
model = vehicle.find('model').text if vehicle.find('model') is not None else ""
vehicle_info = f"{year} {make} {model}".strip()
# Extract first name
first_name = ""
name_element = root.find('.//name[@part="first"]')
if name_element is not None:
first_name = name_element.text.strip() if name_element.text else ""
return first_name, vehicle_info
class GradioUI:
"""A one-line interface to launch your agent in Gradio"""
def __init__(self, agent: MultiStepAgent, file_upload_folder: str | None = None):
if not _is_package_available("gradio"):
raise ModuleNotFoundError(
"Please install 'gradio' extra to use the GradioUI: `pip install 'smolagents[gradio]'`"
)
self.agent = agent
self.file_upload_folder = Path(file_upload_folder) if file_upload_folder is not None else None
self.name = getattr(agent, "name") or "OTTO: The Car Sales Agent"
self.description = getattr(agent, "description", None)
if self.file_upload_folder is not None:
if not self.file_upload_folder.exists():
self.file_upload_folder.mkdir(parents=True, exist_ok=True)
def interact_with_agent(self, prompt, messages, session_state, car_site, adf_lead):
import gradio as gr
self.agent.prompt_templates["system_prompt"] += f"\n\nWhen answering a customer's question about the dealership or other cars, use the following site to find the information:\n\nDealership Site: {car_site}\n\nWhen answering a customer's question about the specific car use the following ADF Lead:\n\nADF Lead: {adf_lead}"
# Get the agent type from the template agent
if "agent" not in session_state:
session_state["agent"] = self.agent
try:
messages.append(gr.ChatMessage(role="user", content=prompt, metadata={"status": "done"}))
yield messages
for msg in stream_to_gradio(session_state["agent"], task=prompt, reset_agent_memory=False):
if isinstance(msg, gr.ChatMessage):
messages.append(msg)
elif isinstance(msg, str): # Then it's only a completion delta
try:
if messages[-1].metadata["status"] == "pending":
messages[-1].content = msg
else:
messages.append(
gr.ChatMessage(role="assistant", content=msg, metadata={"status": "pending"})
)
except Exception as e:
raise e
yield messages
yield messages
except Exception as e:
print(f"Error in interaction: {str(e)}")
messages.append(gr.ChatMessage(role="assistant", content=f"Error: {str(e)}"))
yield messages
def upload_file(self, file, file_uploads_log, allowed_file_types=None):
"""
Handle file uploads, default allowed types are .pdf, .docx, and .txt
"""
import gradio as gr
if file is None:
return gr.Textbox(value="No file uploaded", visible=True), file_uploads_log
if allowed_file_types is None:
allowed_file_types = [".pdf", ".docx", ".txt"]
file_ext = os.path.splitext(file.name)[1].lower()
if file_ext not in allowed_file_types:
return gr.Textbox("File type disallowed", visible=True), file_uploads_log
# Sanitize file name
original_name = os.path.basename(file.name)
sanitized_name = re.sub(
r"[^\w\-.]", "_", original_name
) # Replace any non-alphanumeric, non-dash, or non-dot characters with underscores
# Save the uploaded file to the specified folder
file_path = os.path.join(self.file_upload_folder, os.path.basename(sanitized_name))
shutil.copy(file.name, file_path)
return gr.Textbox(f"File uploaded: {file_path}", visible=True), file_uploads_log + [file_path]
def log_user_message(self, text_input, file_uploads_log):
import gradio as gr
return (
text_input
+ (
f"\nYou have been provided with these files, which might be helpful or not: {file_uploads_log}"
if len(file_uploads_log) > 0
else ""
),
"",
gr.Button(interactive=False),
)
def launch(self, share: bool = True, **kwargs):
self.create_app().launch(debug=True, share=share, **kwargs)
def create_app(self):
import gradio as gr
with gr.Blocks(theme="ocean", fill_height=True) as demo:
# Add session state to store session-specific data
session_state = gr.State({})
stored_messages = gr.State([])
file_uploads_log = gr.State([])
with gr.Sidebar():
gr.Markdown(
f"# {self.name.replace('_', ' ')}"
"\n> Test the OTTO Agent by asking it questions."
+ (f"\n\n**Agent description:**\n{self.description}" if self.description else "")
)
with gr.Group():
gr.Markdown("**Your request**", container=True)
text_input = gr.Textbox(
lines=3,
label="Chat Message",
container=False,
placeholder="Enter your prompt here and press Shift+Enter or press the button",
)
submit_btn = gr.Button("Submit", variant="primary")
with gr.Accordion("Dealership Info", open=False):
car_site = gr.Textbox(label="Car Gurus Dealership Site", lines=2, value="https://www.cargurus.com/Cars/m-Ohio-Cars-sp458596", interactive=True)
adf_lead = gr.Textbox(label="ADF Lead", lines=4, value="<?xml version=\"1.0\"?><?ADF version=\"1.0\"?><adf><prospect><requestdate>2025-05-12T13:59:30</requestdate><vehicle status=\"used\"><id source=\"CarsForSale.com\">16f3114e-825f-4eb0-8165-ce43fe5143b6</id><year>2016</year><make>Toyota</make><model>Corolla</model><vin>5YFBURHE4GP511115</vin><stock></stock><comments>DP</comments><colorcombination><exteriorcolor>Super White</exteriorcolor></colorcombination><miles>131024.0</miles><price type=\"asking\">9950</price></vehicle><customer><contact><name part=\"first\">Test</name><name part=\"last\">Lead</name><name part=\"full\">Test Lead</name><email>123@gmail.com</email><phone>2582584568</phone><address><city></city><state></state><postalcode></postalcode></address></contact><comments><![CDATA[I'm interested and want to know more about the 2016 Toyota Corolla S Plus you have listed for $9,950 on Cars For Sale.]]></comments><timeframe><description></description></timeframe></customer><provider><id>19971</id><name part=\"full\">Carsforsale.com</name><service>Carsforsale.com</service><phone>866-388-9778</phone></provider><vendor><id>114483</id><vendorname>Ohio Cars</vendorname></vendor></prospect></adf>", interactive=False)
# If an upload folder is provided, enable the upload feature
if self.file_upload_folder is not None:
upload_file = gr.File(label="Upload a file")
upload_status = gr.Textbox(label="Upload Status", interactive=False, visible=False)
upload_file.change(
self.upload_file,
[upload_file, file_uploads_log],
[upload_status, file_uploads_log],
)
first_name, vehicle_info = extract_vehicle_info_as_string(adf_lead.value)
message = gr.ChatMessage(role="assistant", content=f"Hi {first_name}! The {vehicle_info} you're interested in is available at [OhioCars.com](https://www.ohiocars.com). Would you like to schedule a visit to check it out? We have appointment slots at 11 AM, 1 PM, or 3 PM. Which time works best for you?", metadata={"status": "done"})
# Main chat interface
chatbot = gr.Chatbot(
label="Agent",
type="messages",
value=[message],
avatar_images=(
None,
"https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/smolagents/mascot_smol.png",
),
resizeable=True,
scale=1,
)
# Set up event handlers
text_input.submit(
self.log_user_message,
[text_input, file_uploads_log],
[stored_messages, text_input, submit_btn],
).then(self.interact_with_agent, [stored_messages, chatbot, session_state, car_site, adf_lead], [chatbot]).then(
lambda: (
gr.Textbox(
interactive=True, placeholder="Enter your prompt here and press Shift+Enter or the button"
),
gr.Button(interactive=True),
),
None,
[text_input, submit_btn],
)
submit_btn.click(
self.log_user_message,
[text_input, file_uploads_log],
[stored_messages, text_input, submit_btn],
).then(self.interact_with_agent, [stored_messages, chatbot, session_state, car_site, adf_lead], [chatbot]).then(
lambda: (
gr.Textbox(
interactive=True, placeholder="Enter your prompt here and press Shift+Enter or the button"
),
gr.Button(interactive=True),
),
None,
[text_input, submit_btn],
)
return demo
__all__ = ["stream_to_gradio", "GradioUI"]
|